Chinese functional foods and nutraceuticals: plants and products commercialized in the Ciudad Autónoma de Buenos Aires, Argentina

Jeremías P. Puentes1*, Patricia M. Arenas1, Julio A. Hurrell1

ABSTRACT

Knowledge linked to the traditions of different groups of immigrants in the large cities is a central issue for Urban Ethnobotany, and they constitute a starting point for the discipline approach. This article contributes to the study about local botanical knowledge within the pluricultural context of Buenos Aires-La Plata Metropolitan Area, in particular, the botanical knowledge about plants and its products introduced by Chinese immigrants in the Ciudad Autónoma de Buenos Aires. The registered functional food and nutraceutical plants products marketed by these immigrants (that belong to the Traditional Chinese Phytotherapy) are locally employed for the treatment of some ailments usually linked to the urban lifestyle, such as hypercholesterolemia, anxiety, depression, sexual dysfunction, among others. In this sense, the work contributes to the understanding of the local biocultural diversity (both plants and its associated knowledge). The research followed usual qualitative ethnobotanical methods and techniques, especially semi-structured and free interviews to 250 qualified informants, prior informed consent. In addition, a bibliographic review about species biological activity and studied effects were realized, in order to compare it with the locally assigned uses. An inventory of plant products of 52 vascular plants (vegetables, legumes, fruits, condiments) locally recognized as functional foods was obtained. Plants products belonging to 30 of the 52 treated taxa are commercialized only within the restricted commercial circuit of the Chinese immigrants. Therefore, these taxa are considered “invisible” for the majority of local inhabitants. Plants products of the 22 remaining taxa are marketed in both the restricted Chinese circuit and the general commercial one. Then, these taxa are “visible” for all residents. Local botanical knowledge is evaluated from the circulation of plant products in local trade circuits. “Invisible” taxa may become “visible” when entering the general commercial circuit. This “visualization process” of plants products and its associated knowledge express the local botanical knowledge dynamics.

Keywords: Ethnobotany; Urban Pluricultural Context; Local Botanical Knowledge; Chinese Immigration; Argentina.

* Corresponding author. * E-mail address: jeremiasppuentes@gmail.com
INTRODUCTION

1. Urban Ethnobotany

In the last years, various contributions to Urban Ethnobotany, in different parts of the world, refer to the knowledge linked to the traditions of different immigrant groups and have constituted starting points for the approach of the discipline. In several works, the contribution of the ethnobotanical study in the evaluation of different medicinal plants and products, and its associated knowledge, introduced by immigrants in their new urban context was highlighted. In this framework, ethnomedical studies recorded among immigrants from different urban areas where demonstrated the value of ethnobotanical studies in the analysis of how the Western medical system and other practices of diverse cultures interact in urban pluricultural contexts (Balick et al., 2000; Balick and Lee, 2001; Reiff et al., 2003; Pieroni et al., 2005). Other works evaluate how immigrants adapt to a new cultural context, studying the way of using the medicinal plants linked to the pharmacopeias of their respective countries, recording which ones are still used, which not, and which are the new species incorporated in the urban local scenario (Sandhu and Heinrich, 2005; Ceuterick et al., 2008; Pieroni and Vandebroek, 2009; Volpato et al., 2009; Monteiro et al., 2010; Medeiros et al., 2012; Abreu et al., 2015, among others).

In Buenos Aires-La Plata Metropolitan Area, the Laboratorio de Etnobotánica y Botánica Aplicada (LEBA) has conducted studies on different plants and plant products that are entered into the local urban context by several immigrants segments, analyzing the composition and dynamics of local botanical knowledge (Pochettino et al., 1997, 2008, 2012; Arenas et al., 2011, 2015; Hurrell and Puentes, 2013, 2017; Hurrell et al., 2013, 2015a, b, 2016, Puentes and Hurrell, 2015; Puentes, 2016, 2017).

2. Theoretical-methodological framework

The theoretical-methodological framework of this research based on a broad concept of Urban Ethnobotany understood as the study of the relationships between people and plants in urban pluricultural contexts (Hurrell, 2014; Hurrell and Pochettino, 2014). Urban pluriculturality it is enriched by the increasing presence of diverse immigrants segments which introduce plants and plant products, and its associated knowledge into the local scenario, i.e., respectively “tangible” and “intangible” components (Ladio and Albuquerque, 2016).

The urban botanical knowledge (UBK) constitutes a complex set of knowledge and beliefs about plants, parts thereof, and derivative products. The UBK includes 1) nontraditional knowledge: the taught and learned in educational systems, and the knowledge transmitted by the mass media, specially the Internet (including the scientific knowledge); 2) linked to traditions knowledge: mainly origin traditions of the segments of immigrants, a kind of knowledge that cannot be considered "traditional" because it corresponds to homogeneous cultural contexts (Hurrell, 2014; Hurrell and Pochettino, 2014).

The theoretical-methodological frame also assumes that the UBK is not accessible in a direct way, but can be extrapolated from the “actions” that this knowledge orients, like discourses, practices, strategies of selection, use and consume of plants and its products. At the same time, those actions become evident through the circulation of plant products within the local commercial circuits.
that include the “general” circuit and the “restricted” circuits of diverse immigrants segments. Plant products that circulate inside the general commercial circuit are "visible" for all local urban dwellers (including all the immigrants). Plant products circulating within the restricted commercial circuit of each immigrants segment are visible to members of that particular segment and also some urban residents (non-immigrants and immigrants from others segments) interested in specific plants products. However, the exclusive products of the commercial circuit of a particular immigrants segment are "invisible" for the majority of the inhabitants of local pluricultural context.

At times, some invisible plant products and their associated knowledge become "visible" by entering the general commercial circuit. This becoming is called here "visualization process". This begins when a product of a species restricted to the commercial circuit of the immigrant segments (invisible) is present in the general commercial circuit, especially in health food stores (locally called "dietéticas"). These shops install the product and encourage its consumption, and transmit information about its characteristics, uses and modes of employment (associated knowledge). This first knowledge diffusion is enhanced by the media, the Internet in particular, which plays a fundamental role in knowledge transmission because it acts in a fast way and into multiple directions at the same time. In this context, the media and the “dietéticas” act as true “visualization agents" (Hurrell, 2014; Hurrell and Pochettino, 2014). The distinction between invisible and visible plant species, for the majority of the local urban dwellers, constitutes not only a conceptual distinction but also a methodological tool to address the study of the visualization process, i.e., the local urban botanical knowledge dynamics (Hurrell and Puentes, 2017; Puentes, 2017).

The presence of plant products in local commercial circuits, the general one and the restricted to the immigrants, allows specifying the visibility or invisibility of plant species, and also the visualization of certain species over time. However, although commercial circuits are necessary to assess the invisibility and visibility of plant products, the economic processes and marketing are not sufficient to explain the ethnobotanical context in which “invisibility” or “visibility” has its meaning. In a more complex framework, the commercial circuits are circulation paths of plant products (tangible elements) and, at the same time, these circuits act as communication systems where plant products carry their associated knowledge (intangible elements) that gives them meaning.

3. Chinese immigration

This contribution presents the results of ethnobotanical research about functional plant foods introduced and commercialized by Chinese immigrants in the Ciudad Autónoma de Buenos Aires, Argentina. All the species here presented belong to the Traditional Chinese Phytotherapy, in this sense this contribution complements the results obtained in a previous work on that issue (Hurrell and Puentes, 2017). The segment of Chinese immigrants was selected because it is one of the groups of immigrants with the most outstanding presence in the study area, and at present is one of the fast-growing immigrant groups in the country.

From the ethnobotanical point of view, Chinese immigration constitutes an important source of new plant products (food and medicine), especially in the last twenty
years, which enrich the local botanical knowledge composition.

Argentina received "massive" immigratory waves in the mid-nineteenth century and the first half of the twentieth century. Most of those immigrants were of European origin, especially Italians and Spaniards that settled in a large part of the country. This migration flow has helped to shape the country’s cultural heritage, and many current “family traditions” have their roots in that early immigration. In the second half of the twentieth century, a new kind of immigration called "recent" occurred, not massive and localized in the Buenos Aires Metropolitan Area. The Chinese immigration, looking for better economic conditions, is framed into the context of this recent immigration process (Bogado Bordazar 2003; Hurrell and Pochettino, 2014; Hurrell and Puentes, 2017; Puentes, 2017).

4. Functional foods and nutraceuticals

Plants for "eating and healing" (Etkin and Ross, 1982; Pieroni and Price, 2006; Chen, 2009) are usually considered functional foods and nutraceuticals. “Functional foods” are foods consumed as a source of nutrients and to maintain health or reduce the risk of diseases, with or without knowledge of how or why they have such benefits (Kalra, 2003).

“Nutraceuticals” are functional foods used for the prevention and treatment of diseases, and the consumers know how or why are beneficial to health, e.g., the orange juice. In this context, what it is a functional food for one consumer can act as a nutraceutical for another (Kalra, 2003; Pochettino et al., 2012; Hurrell et al., 2016).

5. Research objectives

The basic objective of this contribution is to present for the first time the inventory of species considered functional foods introduced and marketed by Chinese immigrants in the Ciudad Autónoma de Buenos Aires. This inventory represents a descriptive approach that is relevant in that is the necessary condition for an interpretative evaluation of the visibility and invisibility of the Chinese functional foods and their associated knowledge within the local pluricultural context. The study of visualization process implies an original methodological tool with usefulness confirmed in several works carried out in the LEBA in recent years. In this sense, this contribution provides a new background to the urban ethnobotany research and show the importance of immigrant groups in the study of local botanical knowledge.

This contribution includes plant products recognized as functional food and nutraceuticals, some of those taxa are visible to local inhabitants and others are invisible for most of them. In both cases, the new taxa imply a rise in the biocultural diversity within the urban pluricultural context. The research included: 1) an update of the plant products marketed in both commercial circuits, general and restricted to immigrants, and the visibility of the respective species; 2) the registration of the locally assigned uses, both food and medicinal; 3) the information about biological activity and effects studied in the academic field. The first point aims to answer these research questions about the useful species and products: What is the current inventory of the plant species surveyed? Which species are invisible and which are visible? The second and third points aim to answer the questions about the knowledge
associated with the species: What are the locally assigned uses of the plant species surveyed? Do the assigned uses correspond to the academic research about effects and biological activity of treated species? In short, it is about contributing to the composition and dynamics of local botanical knowledge.

MATERIAL AND METHODS

1. **Study area and involved actors**

 Buenos Aires-La Plata Metropolitan Area has a total area of about 5,000 square kilometers, in which live about 15,000,000 inhabitants (as of 2014). This metropolitan area is the largest in Argentina in both size and population, and the second in South America (after São Paulo Metropolitan Area, Brazil). In this frame, the Ciudad Autónoma de Buenos Aires has 202 square kilometers and about 3,000,000 inhabitants, according to the 2010 National Census (INDEC, 2018). Also according to this census, about 12,000 immigrants were registered for the whole country, about 9,000 from the People's Republic of China, and about 3,000 from Taiwan. Of the total Chinese immigrants in Argentina, 44% lives in Buenos Aires city, and about 39% in Buenos Aires province, about 83% for the Buenos Aires-La Plata Metropolitan Area (Hurrell et al., 2015; Hurrell and Puentes, 2017).

 The most visible presence of Chinese immigrants centered in a sector of Belgrano neighborhood called "Barrio Chino" (Chinatown), where five large supermarkets, various restaurants, and shops were installed, and also cultural events related to Chinese festivities are organized. These characteristics replicate the profile of the Chinatowns in other metropolitan areas of the world (Porterfield, 1951; Sassone and Mera, 2007; Cerrutti, 2009, Hurrell and Pochettino, 2014; Grimson et al. 2016). The five supermarkets offer plant products for the Chinese segment, other immigrants, and also for local residents looking for new products. Towards 2000, the Barrio Chino received about 15,000 visitors every weekend (Bogado Bordazar 2003). Those supermarkets introduce diverse plant products and constitute true dissemination centers for both products and their associated knowledge.

2. **Field works**

 2.1. **Ethnobotanical techniques**

 The ethnobotanical fieldwork focused on the five large supermarkets in the Barrio Chino (the total of Chinese outlets) to analyze the commercial circuit of immigrants, and 120 health food stores (locally called “dietéticas”) of the general commercial circuit to evaluate the visibility of plant species in the local scenario. In total 125 outlets were studied without interruption since 2005. Four visits per year, one for each season, were made to cover all fresh products. The selection of the health food stores started at random and continued until the saturation of information about the investigated plant elements.

 The research methodological approach was strictly qualitative, based on usual ethnobotanical techniques like participant observation (interacting with sellers in the plant products survey), free listings, free and semi-structured interviews, applied according to the specific literature (Martin, 1995; Quinlan, 2005; Stepp, 2005; Bernard, 2006; Etkin and Ticktin, 2010; Albuquerque et al., 2014). In particular, semi-structured interviews' questions focused to identify the
food and medicinal uses of plant products, as well as its diffusion level. With prior informed consent, 250 qualified informants were interviewed (two for each outlet). They are sellers of both sexes and different ages (between 25 and 60 years old), and all of them demonstrated knowledge about the properties of the plant products they sell and guide the consumers on the ways of use.

2.2. Products and samples

In all cases, samples were obtained in all the outlets, designated with an alphanumeric code, and deposited in collections of the LEBA. Commercial products, including fragmented plant materials, tinctures, dietary supplements (tablets, capsules), among others, indicate its components in their official labels. When it was necessary, the plant materials were identified based on external morphological characters. For the updated scientific names, The Plant List (2013) and The International Plant Names Index (2015) were consulted. The descriptive and distributional data about the species were obtained from Flora of China (Wu et al., 1995-2013).

Chinese plant products correspond to fruits, vegetables, legumes, and some condiments, whose therapeutic uses belong to the Chinese Traditional Phytotherapy. Except for Coix lacryma-jobi L., valued as functional food, cereals were excluded from this survey due to the great diversity of its products, which will address in the near future.

2.3. Locally assigned uses

The “locally assigned uses” (both food and medicinal) were constructed based on data coming from: 1) the interviews; 2) products labels and prospectus; 3) information available in graphic media and Internet, that orients the strategies of selection and consumption of many urban residents interested in obtaining new plant products (Hurrell et al., 2015b; Puentes, 2017). The Information from these sources is mostly coincident and was checked with the available general literature (Zhu, 1998; Yang et al., 2003; Newman, 2004; Hu, 2005; Shi et al., 2005; Hempen and Fischer, 2009; Liu, 2011; Goldberg, 2012; Adams and Lien, 2013; Simoons, 2014; Liu et al., 2015a).

3. Revision work

Field works were complemented by a review of the available literature about biological activity and effects evaluated for each treated species. In this regard, we consult various websites, especially PubMed (2018). The search was carried out by scientific name and when necessary keywords such as "biological activity", and "specific effects" (e.g. "sexual dysfunction") according to the assigned local uses. In cases of several references for the same effect, the most current ones were selected. This kind of revision also performed in previous contributions (e.g., Arenas et al., 2015; Hurrell et al., 2015a,b, 2016; Puentes, 2016, 2017; Hurrell and Puentes, 2017). This review becomes pertinent because it is useful information for knowing what uses has academic support, and what uses require validation studies in that context.

RESULTS AND DISCUSSION

Table 1 summarizes the results obtained for 52 taxa, presented by its scientific name in alphabetical order. For each taxon, the botanical family, geographical distribution, vernacular names, marketed products, and samples were included. The Chinese
vernacular names appear in bold-italic, the Spanish and English names in italic. Samples codes indicated between brackets, the samples from Barrio Chino in bold.

Locally assigned uses included both food (F) and medicinal uses (M). The uses in italic correspond to the Chinese Traditional Phytotherapy. Last, the biological activity and effects studied, as well as the respective references, are indicated.

Table 1. Chinese functional foods and nutraceuticals: plants and products commercialized in the Ciudad Autónoma de Buenos Aires, Argentina.

<table>
<thead>
<tr>
<th>SPECIES, FAMILY, ORIGIN, VERNACULAR NAMES, PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium satosum L. AMARYLLIDACEAE</td>
<td>Allium satosum L. AMARYLLIDACEAE</td>
<td>Allium satosum L. AMARYLLIDACEAE</td>
<td>Allium satosum L. AMARYLLIDACEAE</td>
</tr>
<tr>
<td>China</td>
<td>China</td>
<td>China</td>
<td>China</td>
</tr>
<tr>
<td>Cong bai, neg, cebolla china, cebolla de verde, cebollita, japanese bunching onion, scallion, Welkin onion</td>
<td>Cong bai, neg, cebolla china, cebolla de verde, cebollita, japanese bunching onion, scallion, Welkin onion</td>
<td>Cong bai, neg, cebolla china, cebolla de verde, cebollita, japanese bunching onion, scallion, Welkin onion</td>
<td>Cong bai, neg, cebolla china, cebolla de verde, cebollita, japanese bunching onion, scallion, Welkin onion</td>
</tr>
<tr>
<td>Fresh plants in bundles [RF77]</td>
</tr>
<tr>
<td>Alfalfa lanata Rottler ex Sprang</td>
</tr>
<tr>
<td>China</td>
<td>China</td>
<td>China</td>
<td>China</td>
</tr>
<tr>
<td>Fresh leaves and flower buds in bundles [F137]</td>
</tr>
<tr>
<td>Arelen graveolens L. (Secalinum Group) *</td>
</tr>
<tr>
<td>AMARYLLIDACEAE</td>
<td>AMARYLLIDACEAE</td>
<td>AMARYLLIDACEAE</td>
<td>AMARYLLIDACEAE</td>
</tr>
<tr>
<td>Asia</td>
<td>Asia</td>
<td>Asia</td>
<td>Asia</td>
</tr>
<tr>
<td>F. Raw and boiled buds and leaves as vegetable and condiment, for salads, soups, sauces, stewed beef and chicken dishes.</td>
<td>F. Raw and boiled buds and leaves as vegetable and condiment, for salads, soups, sauces, stewed beef and chicken dishes.</td>
<td>F. Raw and boiled buds and leaves as vegetable and condiment, for salads, soups, sauces, stewed beef and chicken dishes.</td>
<td>F. Raw and boiled buds and leaves as vegetable and condiment, for salads, soups, sauces, stewed beef and chicken dishes.</td>
</tr>
<tr>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for salads and stews. Also dried for drier use.</td>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for salads and stews. Also dried for drier use.</td>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for salads and stews. Also dried for drier use.</td>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for salads and stews. Also dried for drier use.</td>
</tr>
<tr>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for filleting dumplings (jiaozi), and dishes with flat noodles of eggs and wheat flour (jiaozi).</td>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for filleting dumplings (jiaozi), and dishes with flat noodles of eggs and wheat flour (jiaozi).</td>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for filleting dumplings (jiaozi), and dishes with flat noodles of eggs and wheat flour (jiaozi).</td>
<td>F. Raw and cooked leaves and flowers as vegetable and condiment, for filleting dumplings (jiaozi), and dishes with flat noodles of eggs and wheat flour (jiaozi).</td>
</tr>
<tr>
<td>F. Raw and boiled buds and leaves as vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
<td>F. Raw and boiled buds and leaves as vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
<td>F. Raw and boiled buds and leaves as vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
<td>F. Raw and boiled buds and leaves as vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
</tr>
<tr>
<td>F. Raw, steamed or boiled leaves as a vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
<td>F. Raw, steamed or boiled leaves as a vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
<td>F. Raw, steamed or boiled leaves as a vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
<td>F. Raw, steamed or boiled leaves as a vegetable, and fresh or powdered as a condiment, for salads, soups, and stews.</td>
</tr>
</tbody>
</table>
Artium lappa L.
ASTERACEAE
Eurasia
F. Boiled, roasted, pickled or stir-fried roots as a vegetable, for dishes with other vegetables and mushrooms, served with white rice and marinated chicken, also soups, stew, and soya beans.

Niua bang gen, bardana, gobo, burdock
Fresh roots in packs [P325]
Root powder (beverage) [X003]
Dried aerial parts in packs [H182]
Mother tincture [H152]
M. Antiinvasive, antiulcerative, anti-inflammatory, analgesic, anti-edema, antiendotoxal, antibacterial, antitoxic, antimalarial, antiviral, antihepatitis, antihepatic, antiinflammatory, antiinfectious, antinfective, antiparasitic, antiprotease, antirheumatic, antiseptic, antiviral.

Armeria rusticana
Brassicaceae
Eurasia
La gen, rábano picante, borsaradish, kren
F. Raw and cooked roots as a condiment, for soups and various dishes, usually as ‘wasabi’ substitute, spanish radish or yellow radish; [Wasabi japonica (Miq.) Masum.].

Aerva carambola L.
Oxalidaceae
India, China, Philippines, Southeast Asia
Yangste, carambola, star fruit
F. Raw or boiled fruits, for cakes, jujus, jams, pickles, and chicken meals.

Boswelia hispida (Thunb.) Cogn.
Cucurbitaceae
China, tropical Asia
Dong gao, calabaza china, calabaza de tuxteco, wax gourd, winter melon
F. Boiled epe fruits as squash, for soups and stuffed with meat, shrinks, and vegetables, also for sauces and confectionery. Raw or pickled young fruits as a cucumber.

Brassica juncea (L.) Czern.
Brassicaceae
Warm Asia
Jie cao, moustache china, brown mustard, Chinese mustard, leaf mustard
F. Raw, boiled, stir-fried or pickled leaves as vegetable and condiment, for salads and as a dress for various basic meals. Crushed seeds to make mustard. Soured seeds for salads.

Brassica oleracea L. var. albaflora
Kuritz
Brassicaceae
China
Gai lan, broccoli chino, kale chino, quelan, Chinese broccoli, Chinese

Anticancer, estrogenic (Feng et al., 2017; Maxwell et al., 2017), anti-hyperlipidemic, hepatoprotective, anti-diabetic, anti-atherosclerosis, antioxidant (Lu et al., 2014; Puentes, 2016; Wang et al., 2016; Anangpou et al., 2017), anti-inflammatory, anti-rheumatic, anti-edema (Magboumi-Norouzabad et al., 2016; Carletti et al., 2016; Gao et al., 2016), lenticular protective (Yari et al., 2018), anti-aging (Su and Wink, 2015), anti-allergic (Yang et al., 2016), gastroprotective (Ji et al., 2016), anti-lipogenic (Xu et al., 2015b), neuroprotective (Tian et al., 2014), antimicrobial (Ferreira et al., 2005), schistosomicide, anti-viral (Dias et al., 2017).
kale
Fresh leaves in bundles [F185]

Brassica rapa L. var. chinensis (L.) Kitan.
Brassicaceae
China

Pak choi, bok choi, pei sai, bok choy
sum, chaobaichi, yuchai, col china,
Chinese cabbage
['Chinensis' Group]
Fresh plants in bundles: pak choi
[RF26] [RO05], bokchoi [R030],
pattai [R061]
['Pakchienensis' Group]
Fresh plants in bundles: choi sum
[B060]

Brassica rapa L. var. glabra Lecq.
[Peckinensis Group]
Brassicaceae
China

Huong ya bei ca, hai nuoi, repollo
chino, Peking cabbage
Fresh plants [RF06] [RF71]

Cinnamomum cassia (L.) J Presl
Lauraceae
China

Rou gu, canela china, Chinese
cassia, Chinese cinnamon
Fragmented dried bark in packs
[B001]
Powdered dried bark in packs [B154]

Citrus japonica Thunb.
Rutaceae
China

Jin gera, quinato, kamquat
Fresh fruits [B062] [B177]
Fruits preserved in syrup [BP53]
Candied fruits in packs [H117]

Citrus maxima (Burm.) Merr.
Rutaceae
India, China, Philippines, Southeast
Asia
You, pomelo chino, pampelmuse,
shaddock
Fresh fruits [RF54]

Citrus medica L.
Rutaceae
India, China, Burma
Xiang yuen, cedro, citron
Citron and honey for infusions

hyocholisterogenic, cardiovascular
protective, antinumor.

F. Boiled, steamed, stir-fried
and pickled leaves as cabbage, for soups,
salads, stews and meat dishes. Raw
young leaves for salads.

M. Anti-inflammatoruy, anti-
constipation, digestive, diuretic,
antinumor, anti-inflammatory,
anti-osteoporosis, antidiarrheal,
cardioprotective, hypocholesterolemic,
antiscravy, antiinflammatory, antianoxicid,
antiseptic, antiallergic.

Anticancer, pulmonary protective,
antioxidant, hepatoprotective, cardiovascular
protective (Jiao et al., 1998; Rochon et al.,
2006; Al-Stubi, 2013), anti-
inflammatory, antiinfectious,
imunomodulator, anti-infectious,
antiallergic (Carcia et al.,
2011), analgesic, antidepressant (Rahman et al.,
2015).

F. Boiled, steamed, stir-fried
and pickled leaves as cabbage, for soups,
salads, stews and meat dishes. Raw
leaves for beverages.

M. Diuretic, digestive,
anti-inflammatoruy, anti-
edema, antianoxicid, cardio-
protective, antinumor, anti-
inflammatory, anti-
stress.

Antioxidant, anticancer, anti-inflammatory,
cardiovascular protective, antiinfectious,
antibacterial, anti-oxidant,
antiallergic, cardioprotective,
antiinflammatory, anti-
occlusive.

F. Bark as a spice, for soups, sauces,
stews, and various dishes, also in spice
mixtures (Chinese five-spice powder).

M. Antispasmodic, anti-dyspepsia,
antitussive, anti-arthritis, analgesic,
menstrual disorders, apomimesis:
impotence, fertility, antidiarrheal,
gastrointestinal, antinumor, anti-
constipation, antinaporheica,
hypotensive, antidiabetic,
antidiabetes, antinumor,
antidiabetes, anti-
constipation, anti-inflammatoruy,
antidiabetes, anti-
constipation, antidiabetes,
antidiabetes.

Anticancer, antioxidant, anti-dyspepsia,
antiallergic, antinumor, antihypertensive,
cardiovascular protective, antiplatelet,
hypotensive, anti-oxidant, antiallergic,
animal, antinumor, anti-
inflammatoruy, antinumor,
antidiabetes, antinumor,
antidiabetes, antinumor,
antidiabetes, antinumor,
antidiabetes, antinumor.

F. Raw and cooked fruits preserved
in syrup, chutney, jam, jelly, candies,
lickers (acid or sweets), and
beverages liqueurs, infusions.

M. Expectorant, antiinfectious,
antitussive, antidiarrheal,
anti-inflammatoruy, antinumor,
antsedative, antinumor.

Anticancer, antioxidant, smooth muscle relaxant,
ureter contraction stimulant,
hypotensive, antinumor

F. Raw pulp in salads also preserved
in jams, jellies, and juices. The peel
for making marmelade, candied or
dipped in chocolate.

M. Diuretic, anti-constipation,
digestive, detoxifying, brain
organic enhancer: sedative,
antinumor, antidiarrheal,
antiallergic, antinumor.

Antioxidant, anti-inflammatoruy, anti-arthritis, analgesic,
muscle relaxant, antidiabetic, antinumor, antiallergic,
antinumor, antidiarrheal, antinumor,
antiallergic, antinumor.

F. Fruits peel (the pulp is usually dry, it
is not consumed) for jams, sauces,
dressings, marinades, pickles, and spicy
pickles, fish dishes, pastry,
confectionery, and beverages: juices

Antioxidant, cardioprotective, antihypertensive,
anticancer, antidiabetic, antinumor, antiallergic,
antiallergic, anti-infectious, antinumor,
antsedative, antinumor, antidiabetic,
antinumor, antidiabetic.
and infusions (as a lemon substitute). M. Tonic, hepatic, antispasmodic, expectorant, antidiabetic, antihypertensive, anti-inflammatory, antihyperglycemic, antidiabetic, antioxidative, antiallergic, anti-inflammatory, anti-obesity.

Citrus × microcarpa Bunge

Fruit peel to flavor various dishes, beverages and infusions. Squeezed pulp for making lemonade, cocktails, ice cream, yogurt, and jams.

Bunchea

China, Philippines

Jin Ju. calamansi, lime calamansi, calamondin

Fruits in yogurt [X020]

Coke lucyma de boj, Job's tear

Dried seeds in packs [H037]

Colocasia esculenta (L.) Schott

India, China, Southeast Asia

Yu ton, taro, asa been

Fresh tubers [B550]

Frozen fragmented tubers [B050]

Tubers and coconut milk (beverage) [B051]

Cucumis melo L. [C. melo var. reticulatus Makino] [Makura Group]

Cucumis sativus L. East Asia

Tian gua, daono, melón coreano, Korea melon

Fresh fruits [B052]

Fresh sliced fruits in packs [B053]

Curcuma longa L.

Zingiberaceae

Warm Asia

Jiang huang, curcuma, turner

Fresh rhizomes [X011]

Fragmented dried rhizomes in packs [C15]

Powdered rhizomes in packs [C036]

Capsules [P236]

Cymbopogon citratus (DC.) Stapf

F. Raw or cooked young plants as a hypcholesterolemic, astringent, antidiarrheal, antihypertensive, antihyperglycemic, hepatoprotective, contraceptive, estrogenic, neuropeptide, cognitive enhancer (Chihkara et al., 2018).

Antioxidant, antimicrobial, anti-aging, hepatoprotective, anti-hyperglycemic, antidiabetic, neuroprotective, anti-inflammatory, anti-atherosclerosis, anticancer, cardiovascular protective, antioestrogens (Casimiro et al., 2010; Semaining et al., 2015; Al-Snafi, 2016. M.H. Chen et al., 2017; Lou and Ilo, 2017).

Anticancer, antimicrobial (Kim et al., 2010; Kurdu et al., 2012; Park et al., 2013; Fawar et al., 2013), hypolipidemic (Iloban et al., 2006), hypocholesterolemic, antioxidant, hypoglycemic, anti-inflammatory, cardiotonic (Sinseck and Nichir, 2015; Lim, and Kristinapunya and Suganthi, 2017), testosterone and testicular parameters increasing (Ribeiro et al., 2018), vulcaery (Goncalves et al., 2015), immunomodulatory, hemopoietic (Pereira et al., 2015).

Anti-inflammatory, antioxidant, anticancer, antidiabetic, vulnerary, cardiovascular protective, anti-obesity, anti-atherosclerosis, hypolipidemic, hypcholesterolemic, hepatoprotective, hypotensive, neuroprotective, anti-inflammatory, anti-asthmatic, anti-diabetic, anticoagulant, antidiabetic, antithrombotic, neuroprotective, antidiabetic, antihelminthic, impotence, fertility.

Anti-oxidant, antimicrobial, antiviral, antioxidant.
condiment, for salads, soups, suces, marinades, stews, pork or chicken dishes, pastry, and confectionery, also for spices mixtures and infusions. M. Antiinflammatory, analgesic, antiseptic, antinflammatory, antiinflammatory, depurative, hypotensive, hypocholesterolemic, antiinfection, anti-influenza, sedative, antihypertensive, antiperic, antitumor, detoxifying.

F. Fresh aromatic anils for desserts, sweet-and-sour dishes, soups, stews, snacks, preserved in syrup, juices, and liqueurs, also dried as raisins, in Chinese sweet dessert soups. M. Antiinflammatory, anti-fatigue (physical and mental), analgesic, cardiotonic, bronchitic, anti-inflammation, antiinflammatory, anti-inflammation, antihypertensive, anti-inflammatory, anti-inflammatory, antiperspirant, antiseptic, antiperic, antitumor, anti-aging, vulnerary, slimming, anesthetic, immunostimulant.

Anticancer, immunomodulatory, antitumor, antihypertensive, antidiabetic (Neng et al., 2014), hypotensive (Shen et al., 2016), anti-osteoporosis (S. Park et al., 2016), antiinfluenza, antimalarial (Sun et al., 2017), antiinflammatory (Kumar et al., 2016), antidiabetic, analgesic, anti-inflammatory, sedative, antihypertensive (Okawa et al., 1999; Iriš et al., 2014), antifatigue (Zheng et al., 2010), anti-inflammation (Ma et al., 2009), expectorant, sedative, antihypertensive (Park et al., 2013).

Antioxidant, antiinflammatory, anticancer, cardioprotective (C.T. Chen et al., 2017; Tsukayama et al., 2018), immunomodulatory (Lin et al., 2009), probiotic, gasostestinal enhancer (Hsu et al., 2006), hypoglycemic (Iowa et al., 1989), estrogenic (Wu et al., 2005), hypocholesterolemic (Kusano et al., 2016), neuroprotective, mnemonic, antidepressant (Lee et al., 2013; Jeon et al., 2014).

Anticancer, antiinflammatory, anticancer, cardioprotective (C.T. Chen et al., 2017; Tsukayama et al., 2018), immunomodulatory (Lin et al., 2009), probiotic, gasostestinal enhancer (Hsu et al., 2006), hypoglycemic (Iowa et al., 1989), estrogenic (Wu et al., 2005), hypocholesterolemic (Kusano et al., 2016), neuroprotective, mnemonic, antidepressant (Lee et al., 2013; Jeon et al., 2014).

Antioxidant, antiinflammatory, anticancer, cardioprotective (C.T. Chen et al., 2017; Tsukayama et al., 2018), immunomodulatory (Lin et al., 2009), probiotic, gasostintestinal enhancer (Hsu et al., 2006), hypoglycemic (Iowa et al., 1989), estrogenic (Wu et al., 2005), hypocholesterolemic (Kusano et al., 2016), neuroprotective, mnemonic, antidepressant (Lee et al., 2013; Jeon et al., 2014).
and liqueurs (as anise substitute).

M. *Angeissig, anibacter, anil

anti-inflammatory, antispasmodic, antipyretic, diuretic, digestive, anti-diarrheal, carminative, anti-inflammatory, antispasmodic, antipyretic, digestive, antidiarrheal, carminative, analgesic, antipyretic, diuretic, diaphoresis.

F. Raw, cooked and pickled fruits or leaves, used as a potherb in various dishes.

M. *Cassia, cinnamomum, cinnamon, kaffir

anti-inflammatory, antispasmodic, antipyretic, diuretic, digestive, anti-diarrheal, carminative, analgesic, hypotensive, antispasmodic, antipyretic, diuretic, digestive, anti-diarrheal, carminative, analgesic, hypotensive, antispasmodic, antipyretic, diuretic, digestive, anti-diarrheal, carminative, analgesic, antispasmodic, antipyretic, diuretic, digestive, anti-diarrheal, carminative, analgesic, hypotensive, antispasmodic, antipyretic, diuretic, diges
Puentes et al. 2019. Chinese functional foods and nutraceuticals: plants and products commercialized in the Ciudad Autónoma de Buenos Aires, Argentina

Ethnobi Conserv 8:10

Puentes, E. et al.

Chinese functional foods and nutraceuticals: plants and products commercialized in the Ciudad Autónoma de Buenos Aires, Argentina

Ethnobi Conserv 8:10

Lycium barbarum L.

Solanaceae

China

Gou qi zi, goji, Chinese wolfberry

Dried fruits in packs [R169] [D001]

Red tea with goji in packs [X014]

Fresh fruits [F191]

Contains edible oil.

M. **Expectorant, antitussive, anti-asthmatic, galactagogue, emollient, anti-inflammatory, digestive, hepatic, anthemorrhoid, anti-tumor, astringent, laxative, analgesic, uterine contraction, spasmylic, anti-hermaphroditic, anti-estrogenic, anti-menopause.**

Adaptogen, cognitive enhancer: memory and learning, anti-oxidative, antidepressant, neuroprotective, antioxidant, hypolipidemic, hypoproteinemic, cardioprotective, anti-atherosclerosis.

Calendula officinalis L.

Compositae

Europe, Middle East, and Asia

Calendula officinalis

Dried flowers in packs [R128] [X240]

Flower tea in packs [X139]

Fresh flowers [F183]

Calendula officinalis caulophylla (L.) Maxim.

Calendula officinalis var. officinalis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflora

Calendula officinalis var. fulvicolor

Calendula officinalis var. hirta

Calendula officinalis var. ochroleuca

Calendula officinalis var. albescens

Calendula officinalis var. pubescens

Calendula officinalis var. liniflora

Calendula officinalis var. cyclarthes

Calendula officinalis var. pygmaea

Calendula officinalis var. micranthae

Calendula officinalis var. microcephala

Calendula officinalis var. paradoxa

Calendula officinalis var. latiloba

Calendula officinalis var. grandis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflora

Calendula officinalis var. fulvicolor

Calendula officinalis var. hirta

Calendula officinalis var. ochroleuca

Calendula officinalis var. albescens

Calendula officinalis var. pubescens

Calendula officinalis var. liniflora

Calendula officinalis var. cyclarthes

Calendula officinalis var. pygmaea

Calendula officinalis var. micranthae

Calendula officinalis var. microcephala

Calendula officinalis var. paradoxa

Calendula officinalis var. latiloba

Calendula officinalis var. grandis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflora

Calendula officinalis var. fulvicolor

Calendula officinalis var. hirta

Calendula officinalis var. ochroleuca

Calendula officinalis var. albescens

Calendula officinalis var. pubescens

Calendula officinalis var. liniflora

Calendula officinalis var. cyclarthes

Calendula officinalis var. pygmaea

Calendula officinalis var. micranthae

Calendula officinalis var. microcephala

Calendula officinalis var. paradoxa

Calendula officinalis var. latiloba

Calendula officinalis var. grandis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflora

Calendula officinalis var. fulvicolor

Calendula officinalis var. hirta

Calendula officinalis var. ochroleuca

Calendula officinalis var. albescens

Calendula officinalis var. pubescens

Calendula officinalis var. liniflora

Calendula officinalis var. cyclarthes

Calendula officinalis var. pygmaea

Calendula officinalis var. micranthae

Calendula officinalis var. microcephala

Calendula officinalis var. paradoxa

Calendula officinalis var. latiloba

Calendula officinalis var. grandis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflora

Calendula officinalis var. fulvicolor

Calendula officinalis var. hirta

Calendula officinalis var. ochroleuca

Calendula officinalis var. albescens

Calendula officinalis var. pubescens

Calendula officinalis var. liniflora

Calendula officinalis var. cyclarthes

Calendula officinalis var. pygmaea

Calendula officinalis var. micranthae

Calendula officinalis var. microcephala

Calendula officinalis var. paradoxa

Calendula officinalis var. latiloba

Calendula officinalis var. grandis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflora

Calendula officinalis var. fulvicolor

Calendula officinalis var. hirta

Calendula officinalis var. ochroleuca

Calendula officinalis var. albescens

Calendula officinalis var. pubescens

Calendula officinalis var. liniflora

Calendula officinalis var. cyclarthes

Calendula officinalis var. pygmaea

Calendula officinalis var. micranthae

Calendula officinalis var. microcephala

Calendula officinalis var. paradoxa

Calendula officinalis var. latiloba

Calendula officinalis var. grandis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflora

Calendula officinalis var. fulvicolor

Calendula officinalis var. hirta

Calendula officinalis var. ochroleuca

Calendula officinalis var. albescens

Calendula officinalis var. pubescens

Calendula officinalis var. liniflora

Calendula officinalis var. cyclarthes

Calendula officinalis var. pygmaea

Calendula officinalis var. micranthae

Calendula officinalis var. microcephala

Calendula officinalis var. paradoxa

Calendula officinalis var. latiloba

Calendula officinalis var. grandis

Calendula officinalis var. biennis

Calendula officinalis var. aurea

Calendula officinalis var. ramosissima

Calendula officinalis var. procera

Calendula officinalis var. ericoides

Calendula officinalis var. grandiflor
Pueraria lobata (L.) Britten

LAMANACEAE

India, Bhutan, Korea, Japan, China, Southeast Asia

Zizyphus jujuba, *zhuo*, Chinese jujube, jujube, *zhibao*

Rutaceae

India, Bhutan, Korea, Japan, China, Southeast Asia

Zizyphus jujuba, *zhuo*, Chinese jujube, jujube, *zhibao*

F Fresh leaves for various Chinese and Japanese dishes (sushi), noodles, meats, and fish, also to make beverages and as a condiment (as basil substitute).

M Antioxidant, anti-inflammatory, antimicrobial, antiviral: HIV, hepatoprotective, anti-allergic, antiinflammatory, hypotensive, sedative, anxiolytic, antipyretic (Zhu, 1998; Igarashi and Miyazaki, 2013; Buchetti et al., 2014; Yu et al., 2017), anticonvulsant (He et al., 2015; Abd El-Hafeez et al., 2018), neuroprotective, cognitive enhancer: memory and learning (Lee et al., 2016a), anti-inflammatory (Chen et al., 2015), anti-ophthalmic (Kim et al., 2016), anti-adipogenic (Park et al., 2016), anti-inflammation (Komatsu et al., 2016).

Physiostachys yarrowsiensis Siebold & Zucc. [= *P. reticulata* (L.) K. Koch]

POACEAE

China, Japan

Gin zum, hambó, hambó

Fresh sprouts [F132]

Phyllostachys edulis (Carrière.) Heuz. [= *P. pubescens* J. Heuz.]

POACEAE

China

Mao zum, hambó, hambó bamboo

Dried sprouts in packs [X005]

Pickled sprouts [F133] [H049]

Fresh fragmented sprouts (chu ra) [X008]

Fresh fragmented sprouts in packs [X030]

Primus mume (Siebold) Siebold & Zucc.

RUTACEAE

Korea, Japan, Southeast Asia

Wu mei, ume, ciruela china, ciruela japonesa, ciruela ame, Chinese plum

Pickled fruits in packs [F141]

Dried fruits in packs [F143]

Pyrus pyrifolia (Burm. f.) Nakai

Rosaceae

China, Southeast Asia

Li xue li, pea asiatica, pea china, Asian pear, Chinese pear

Fresh fruits [F157] [N195]

Canned juice [F158]

Dehydrated fragmented fruits in packs [X024]

Raphanus sativus L. var.

BRASSICACEAE

Japan

Rohbur

Fresh roots [F160] [F214]

Pickled roots in packs [X015]

Succulents officinarum L.

POACEAE

Southeast Asia, Pacific Islands

Gan zhu, araza de azúcar, sugar cane

F Fresh leaves for various Chinese and Japanese dishes (sushi), noodles, meats, and fish, also to make beverages and as a condiment (as basil substitute).

M Antioxidant, anti-inflammatory, antimicrobial, anti-influenza, HIV, hepatoprotective, anti-allergic, antinflammatory, hypotensive, sedative, anxiolytic, antipyretic (Zhu, 1998; Igarashi and Miyazaki, 2013; Buchetti et al., 2014; Yu et al., 2017), anticonvulsant (He et al., 2015; Abd El-Hafeez et al., 2018), neuroprotective, cognitive enhancer: memory and learning (Lee et al., 2016a), anti-inflammatory (Chen et al., 2015), anti-ophthalmic (Kim et al., 2016), anti-adipogenic (Park et al., 2016), anti-inflammation (Komatsu et al., 2016).

**Antioxidant, anti-inflammatory, anti-influenza, HIV, hepatoprotective, anti-allergic, antinflammatory, hypotensive, sedative, anxiolytic, antipyretic (Zhu, 1998; Igarashi and Miyazaki, 2013; Buchetti et al., 2014; Yu et al., 2017), anticonvulsant (He et al., 2015; Abd El-Hafeez et al., 2018), neuroprotective, cognitive enhancer: memory and learning (Lee et al., 2016a), anti-inflammatory (Chen et al., 2015), anti-ophthalmic (Kim et al., 2016), anti-adipogenic (Park et al., 2016), anti-inflammation (Komatsu et al., 2016).
Chinese functional foods and nutraceuticals: plants and products commercialized in the Ciudad Autónoma de Buenos Aires, Argentina

Scolania meloenega L.

SCOLANEA

India, China, Burma

Qie zi, *Beneserry*, *eggplant*

Fresh ovoid or rounded fruits (black, white, purple) *[B057]* *[F172]* *[F173]* *[F174]*

Fragmented dried fruits *[H21]*

Serpenium Group

Fresh long and thin fruits: *Chinese eggplant* *[F194]*

Syzygium samarangense (Blume)

Merr. & L.M. Perry

Myrtaceae

China, Southeast Asia, New Guinea

Yang pa tao, *manzana de Java, Java apple*, *jamun samarang, taw jambu*

Fresh fruits *[F177]*

Vigna angularis (Wild.) Ohwi & H. Okashi

LEGUMINOSAE

Himalayas, China, Japan

**Chili bao dou, Hong dou, adult, poroio adzuki, adzuki bean*

Dried seeds *[K022]*

Dried seeds in packs *[H150]* *[BH15]* *[H060]*

Canuned arko *[K027]*

Vigna radiata (L.) K. Wilczek

LEGUMINOSAE

India, Sri Lanka, Pakistan, China, Southeast Asia, Africa

Lo dou, poroio mung, raung bean

Dried seeds *[H451]* *[H059]*

Dried seeds in packs *[K052]*

“Celophane” noodles *[R081]*

Sprouted seeds *[soybean sprouts]* in packs *[K039]* *[R089]*

Vigna unguiculata (L.) Walp subsp. *unguiculata*

LEGUMINOSAE

Africa and Warm Asia

Jiang dou, cant, poroio tape, black-eyed bean, goat pea

constipation, emollient, antitussive, anti-fatigue, anti-icteric, immunostimulant, antipyretic, antioxidiant, antitumor, anti-urogenital, urinary antiseptic, antihemorrhagic.

F. Fresh or dried ripe fruits for desserts like raisins and beverages, also pickled and fermented in wine.

M. Astringent (pulmonary and intestinal), neuroprotective, anti-asthmatic, antitussive, anti-dyspeptic, antifatigue (physical and mental), anti-diarrheal, anti-sudorific, anti-prematurity, sedative, antidiabetes, anti-insomnia, anti-hepatitis, antineuralgia, anemic, anxiolytic, aphrodisiac; premature ejaculation, impotence.

F. Boiled, grilled, seamed, fried, roasted or pickled fruits for soups, purées, stewed with other vegetables, meat or fish and various dishes.

M. Depurative, carminative, antithromboidal, antipyretic, analgesic, anti-inflammatory, anti-asthmatic, anisodicetic digestive, hypotensive, anti-foresight, antineuralgia, virulence, antipneumatic, antidiabetic, cholagogue, anisoptic, anti-insomnia, antitumor, diuretic, menemonic.

F. Fresh fruits preserved in sauces, jams, syrups, juice, liqueurs, and wine.

M. Anti-inflammatory, anti-anemic, anti-typhus, anti-cancer, anticholesterol, anti-icteric, anti-asthmatic, antidiabetic, digestive, diuretic, anisotomur, stringent, antidiarrheal, anti-constipation, hypotensive, hypocholesterolemic, carminative, antitussive, slimming.

F. Boiled seeds like beans for various dishes, often with rice. A seed paste boiled with sugar (called *ako*) is used for desserts, in confectionery and pastry products.

M. Diuretic, detoxifying, anti-edema, anti-strangury, anti-diabetes, anti-icteric, anti-inflammatory, antihypertension, hypothermic, anisotic, anisodicetic digestive, antineuralgia, carminative, laxative, antitumor, hypocholesterolemic, antidiabetic.

M. Antioxidant, anti-inflammatory, hypotensive, hypcholesterolemic, hepatoprotective, antitumor, anti-obesity, anti-icteric, anti-atherosclerosis, antidiabetic, antihypertension, anisodicetic digestive, anti-neuralgia, carminative, laxative, antitumor, hypocholesterolemic, antidiabetic.

F. Boiled, steamed, fried or fermented seeds for soups, porridges, purées, stews, and various dishes. Sprouted seeds for salads.

M. Diuretic, antidiabetic, antihypertension, anti-atherosclerosis, antitumor, antiparasitic, antithermic, antipyretic, antiphlogistic, antinflammatory, antineuralgia, antineuralgia, antidiabetic, antidiabetes.
1. Plants and plant products

The total of 52 species registered corresponds to 24 botanical families (Figure 1). These species correspond to vegetables, legumes, fruits, and condiments that are locally recognized as functional foods. Of the 52 treated taxa, 29 (55.77%) corresponds to vegetables and legumes: Allium fistulosum, A. schoenoprasum, A. tuberosum, Apium graveolens ‘Secalinum’ Group, Arctium lappa, Benincasa hispida, Brassica juncea, B. oleracea var. albiﬂora, B. rapa var. chinensis, B. rapa var. glabra, Coix lacryma-jobi, Colocasia esculenta, Cucumis melo ‘Makuwa’ Group, Dioscorea japonica, Glycine max, Ipomoea aquatica, Lablab purpureus, Lactuca sativa var. angustata ‘Asparagina’ Group, Luffa aegyptiaca, Momordica charantia, Nelumbo nucifera, Perilla frutescens, Phyllostachys bambusoides, P. edulis, Raphanus sativus var. longipinnatus, Solanum melongena, Vigna angularis, V. radiata, V. unguiculata subsp. unguiculata.

Fruits correspond to 15 taxa that represent 28.85% of the total: Averrhoa carambola, Citrus japonica, C. maxima, C. medica, C. × microcarpa, Dimocarpus longan, Diospyros kaki, Litchi chinensis, Lycium barbarum, Nephelium lappaceum, Prunus mume, Pyrus pyrifolia, Schisandra chinensis, Syzygium samarangense.

Adaptogen, cognitive enhancer: memory and learning, axiolytic, sedative, antihypertensive, antiinflammatory, antioxidant activity (Hurrell et al., 2015a; Chei et al., 2018), hypolipidemic, antidiabetic, hypoglycemic, hypotensive (Wilson, 2015), anti-obesity (Ebralinizadeh Attari et al., 2018), antitumour (Srirastava and Mustafa, 1992), antibacterial, antifungal, anticancer (Zhu et al., 2018), antioxidant (Zhang et al., 2016), antihypertensive (Gairola et al., 2010), anti-inflammatory (Ezzat et al., 2018), cardiovascular protective (Rastogi et al., 2017), analgesic (Wilson, 2015), anti-inflammatory, antihypertensive, antidiabetic, antiallergic, antihyperlipidemic, antioxidant (Hurrell et al., 2015a; Chei et al., 2018), hypotensive (Hosseini et al., 2016; Yilmaz et al., 2018), sexual enhancer: erectile dysfunction (Alakwe et al., 2013).
Ziziphus jujuba. Last, condiments and flavorings correspond to 8 taxa, 15.38% of the total: Armoracia rusticana, Cinnamomum cassia, Curcuma longa, Cymbopogon citratus, Illicium verum, Kaempferia galanga, Saccharum officinarum, Zingiber officinale. It is important to note that some species considered as vegetables are as well use as a condiment, e.g., Allium species, Brassica juncea, Perilla frutescens, and some Citrus species.

The plant products commercialized by Chinese immigrants are very diverse. Fresh plants and its parts (like leaves, culms, underground organs, and fruits) proceed from orchards (locally called "quintas"), as affirming the interviewed people of Barrio Chino supermarkets. The orchards are located in periurban areas of the Buenos Aires-La Plata Metropolitan Area, mainly in the sector known as “green belt” or “horticultural belt”, near La Plata district. The presence alone of these Chinese crops represents an increase in the metropolitan area agro-biodiversity. In addition, cultivation allows maintaining the knowledge associated with the plants uses (Medeiros et al., 2012). This subject will be a reason for a future contribution. On the other hand, packaged plant products, including fruits and vegetables preserved in syrup, jams, juices and other beverages, also pickled, dried or powdered, are imported from China or other countries. The diversity of products and its associated knowledge represent an increase in local biocultural diversity.

2. Therapeutic uses

Table 1 also shows that the locally assigned uses mainly correspond with the biological activity and effects studied. In part, this correspondence is due to the dissemination of scientific knowledge.
through the Internet, which is part of the locally assigned uses construction, what is reflected in the sales arguments of many products (e.g., “The effect of this product is scientifically proven...”). On the other hand, knowledge linked to Chinese tradition is also spread by the Internet as arguments for sale (e.g., “The benefits of this ancestral product...”). Besides, the Traditional Chinese Phytotherapy as a millenary practice has been an important source of research for the Western science, as show the extensive literature on the subject mentioned before (e.g. Adams and Lien, 2013). With some few exceptions, the academic use categories equal or exceed the locally assigned use categories (Figure 2).

Figure 2. Biological activity and evaluated effects within the academic context.

The relevance of some local uses categories (hypocholesterolemic, anxiolytic, antidepressant, sexual enhancer, among others), reflect the need to respond to health representative problems of the urban lifestyle (Puentes, 2017). In this frame, the academic use categories disseminated by the media (associated with the nontraditional knowledge) guide the selective strategies of plant products by the local urban consumers.

3. Species visibility

Of the total of 52 treated species, 30 (57.69%) are exclusive of the trade circuit of Barrio Chino, i.e., the species are invisible for most of the local inhabitants: *Allium tuberosum*, *Apium graveolens ‘Secalinum’ Group*, *Armoracia rusticana*, *Benincasa hispida*, *Brassica juncea*, *B. oleracea var. albiﬂora*, *Cinnamomum cassia*, *Citrus maxima*, *C. medica*, *C. × microcarpa*, *Coix lacryma-jobi*, *Colocasia esculenta*, *Cucumis melo ‘Makuwa’ Group*, *Dimocarpus longan*,
Dioscorea japonica, Ipomoea aquatica, Kaempferia galanga, Lactuca sativa var. angustata ‘Asparagina’ Group, Litchi chinensis, Luffa aegyptiaca, Momordica charantia, Neltumbo nucifera, Nephelium lappaceum, Perilla frutescens, Phyllostachys bambusoides, P. edulis, Prunus mume, Saccharum officinarum, Syzygium samarangense, and Ziziphus jujube (Figure 3). Remaining 22 species (42.31%) have also products in the general commercial circuit, i.e., the species are visible: Allium fistulosum, A. schoenoprasum, Arctium lappa, Averrhoa carambola, Brassica rapa var. chinensis, B. rapa var. glabra, Citrus japonica, Curcuma longa, Cymbopogon citratus, Diospyros kaki, Glycine max, Illicium verum, Lablab purpureus, Lycium barbarum, Pyrus pyrifolia, Raphanus sativus var. longipinnatus, Schisandra chinensis, Solanum melongena, Vigna angularis, V. radiata, V. unguiculata subsp. unguiculata, and Zingiber officinale.

The species “visibility” is a continuum between two extremes: broadly visible (e.g., Glycine max, Lycium barbarum, Zingiber officinale) and scarcely visible (e.g., Brassica rapa var. chinensis, B. rapa var. glabra, Lablab purpureus). The case of broad visibility of Lycium barbarum, the “goji”, is remarkable. Its presence was registered as a medicinal plant in the local “dietéticas” six years ago (Hurrell et al., 2013). Since then, its diffusion was very fast, mainly enhanced by the Internet.

Visibility is an attribute of the species, although some of its products are invisible. For example, Arctium lappa has exclusive (invisible) products from the Barrio Chino as a functional food and has therapeutic products (herbal materials, mother tinctures) disseminated in the dietéticas of the general commercial circuit (visible). Curcuma longa also has exclusive (invisible) products: the fresh rhizomes from the Barrio Chino, while dried or powdered rhizomes and extract in capsules (dietary supplement) are selling in the dietéticas of the general commercial circuit (visible). In both cases the uses linked to Chinese traditions remain invisible for the majority of local inhabitants; however, the species are visible for the study area context.

The distinction between invisible and visible species products for most of the local inhabitants is a conceptual distinction related to 1) the knowledge "linked to traditions" associated to products of invisible species (circulating in the restricted commercial circuit of Chinese immigrants); and 2) the "nontraditional" knowledge associated to products of visible species (circulating in the general commercial circuit).

The invisible/visible distinction is also a methodological tool, which deals with the study of the visualization process of invisible species that become visible (Hurrell, 2014; Hurrell and Pochettino, 2014; Puentes, 2017). For this contribution, 30 of the 52 taxa treated. This methodological tool also allows evaluating the dynamics of the local botanical knowledge because the visualization implies a contextual change in which the knowledge "linked to traditions" becomes "nontraditional".

CONCLUSIONS

The Ciudad Autónoma de Buenos Aires constitutes a pluricultural context defined by the coexistence of diverse segments of immigrants, as occurs in the great capitals of the world. In Buenos Aires city is remarkable the recent presence of Chinese immigrants who carry out commercial and cultural activities in a specific city sector called “Barrio Chino”. In it, five great supermarkets introduce various plant products linked to
Chinese traditions. In this context, the ethnobotanical research included plants and plant products recognized as functional foods and nutraceuticals. The supermarkets of Barrio Chino (restricted commercial circuit) and 120 health food stores (general commercial circuit) were surveyed, with the aim of evaluating the plant products visibility. In total, 52 taxa were found in the Barrio Chino, 30 of which are exclusive to this circuit, and 22 are also marketed in health food stores of the general commercial circuit.

The 52 taxa are represented by plant products that correspond to vegetables, legumes, fruits and condiments, all belonging to the Traditional Chinese Phytotherapy. Food and medicinal locally assigned uses and their biological activity and the studied effects were evaluated. The 30 exclusive taxa of the Barrio Chino are invisible for the majority of local inhabitants. The 22 taxa of both restricted and general trade circuits are visible for all the residents. The methodological tool that implies the distinction between invisible and visible taxa shows that invisible plant products may become visible by entering the general commercial circuit. In this sense, in addition to contributing to the knowledge of new species and their products introduced by Chinese immigrants (that increase the local biocultural diversity), this research contributes to the understanding of the dynamics of local botanical knowledge through the plant products circulation.

ACKNOWLEDGEMENTS

The authors thank Dr. María Lelia Pochettino and the members of the Laboratorio de Etnobotánica y Botánica Aplicada (LEBA), for their continued collaboration, and all the people who participated disinterestedly in the field works. This research line is carried out with the financial support of the Universidad Nacional de La Plata and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

REFERENCES

Hu S.Y (2005) *Food plants of China*. Chinese University Press, Hong Kong, China

Kim MJ, Moon YY, Tou JC, Mou B, Waterland NL (2016) *Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa).* Journal of Food Composition and Analysis 49:19-34

Lim TK (2012b) Edible Medicinal and Non Medicinal Plants. 4, Fruits. Springer, Dordrecht, Nederland

Lim TK (2015) Edible Medicinal and Non Medicinal Plants. 9, Modified Stems, Roots, Bulbs. Springer, Dordrecht, Nederland

Liu YT, Perera CO, Suresh V (2007) Comparison of three chosen vegetables with others from South East Asia for their lutein and zeaxanthin content. Food Chemistry 101:1533-1539

Miraj S (2016) Pharmacological effects of *Saccharum officinarum* L. Der Pharmacia Lettre 8:223-225

Nwaka AC, Okeyikam CC, Bayim PR, Okafor IN (2014) Effect of Shaddock Citrus fruit juice on the lipid profile, fasting blood glucose level and kidney function of male Wistar albino rats. Journal of Pharmacy and Biological Sciences 9:71-74

Quinlan M (2005) Considerations for collecting freelists in the field: examples from Ethnobotany. *Field Methods* 17:1-16

Puentes et al. 2019. Chinese functional foods and nutraceuticals: plants and products commercialized in the Ciudad Autónoma de Buenos Aires, Argentina

Ethnobio Conserv 8:10

Principio del formulario

Yi LT, Li J, Su DX, Dong JF, Li CF (2012) Hypouricemic effect of the methanol extract from *Prunus mume* fruit in mice. Pharmaceutical Biology 50:1423-1427

Yokozawa T, Park CH, Noh JS, Roh SS (2014) Role of oligomeric proanthocyanidins derived from an extract of persimmon fruits in the oxidative stress-related aging process. Molecules 19:6707-6726

Received: 03 March 2019
Accepted: 12 July 2019
Published: 06 August 2019