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ABSTRACT

Disruption of ecosystem services associated with climate change may affect human well-being in different
ways. Medicinal plants provide extremely relevant ecosystem services. Here, we tested the hypothesis
that highly suitable habitats (i.e., suitability ≥ 0.8) for medicinal plants in Caatinga dry forest may
be potentially contracted under scenarios of climate change, which are represented by different levels
of increases in greenhouse gas emissions. We performed species distribution modelling to simulate the
effects of climate change on the range of suitable habitats for medicinal plants native to the Caatinga
dry forest. We selected the 10 most important plant species based on their high local importance as
medicinal resources. We documented that climate change may distinctly affect areas of suitable habitats
for medicinal plants in the Caatinga dry forest. Independent of the future climatic scenario projected
to 2090, 70% of the studied species will likely experience reductions in their areas of highly suitable
habitats and 30% will likely experience increases. Specifically, suitable habitats will likely be reduced
for (1) Amburana cearensis, (2) Anadenanthera colubrina, (3) Bauhinia cheilantha, (4) Myracrodruon
urundeuva, (5) Neocalyptrocalyx longifolium, (6) Operculina hamiltonii, (7) O. macrocarpa; and will
likely be increased for (1) Cereus jamacaru, (2) Erythrina velutina, (3) Maytenus rigida. We also
documented a reduction in medicinal plant species richness and composition in all three future climatic
scenarios analyzed. We alert that potential future contractions of highly suitable habitats for the
most important medicinal plants may compromise ecosystem functions and the provisioning of relevant
natural medicines, mainly to low-income communities, which are abundant in the Caatinga dry forest.

Keywords: Ecosystem services; Natural medicines; Northeastern Brazil; Seasonally dry tropical
forests; Species distribution.
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SIGNIFICANCE STATEMENT

To understand how climate change in the northeastern region of Brazil will likely affects the range and
distribution of suitable habitats for the 10 most relevant medicinal plants native to the Caatinga, the most
diverse seasonally dry tropical forest on Earth, we applied species distribution modelling for these plant species
under three scenarios of projected climate change. We documented that 1) independent of the future climatic
scenario, 70% of the medicinal plant species with high local importance in the Caatinga dry forest will likely
experience reductions in their areas of highly suitable habitats; 2) annual precipitation and elevation are the
most relevant variables to the distribution of medicinal plant species in the Caatinga dry forest; 3) independent
of the future climatic scenario, medicinal plant species richness tends to decrease; 4) reductions in suitable
habitat for medicinal plants will likely compromise ecosystem functions 5) future reductions in suitable habitat
for medicinal plants will likely reduce the possibility of treating diseases by low-income communities in the
Caatinga dry forest.

INTRODUCTION

Climate change, which is directly associated with
global warming, is affecting all regions of the world,
with observed changes in weather and climate ex-
tremes. There is already an increase in 1) hot ex-
tremes in most inhabited regions, 2) heavy precipi-
tation in several regions, and also an increase in the
3) probability of agricultural and ecological collapse
in some regions (IPCC 2021). In this sense, changes
in climate alter the dynamics of different levels of bi-
ological organization, including individuals (genetic
diversity, physiology and morphology), species (range
size and location, habitat quality and quantity), pop-
ulations (recruitment, migration, timing of budding
and flowering), communities (biomass, primary pro-
ductivity, species interactions) and ecosystems (pro-
cesses and services) (Houghton et al. 2001; Malhi
and Wright 2004; Malhi et al. 2008; Scheffers et al.
2016). The effects of these changes, especially those
related to species distribution, persistence and diver-
sity, have been widely reported for plants (e.g., Pimm
et al. 1995; Prado 2000; Peterson et al. 2002; Thomas
et al. 2004; Botkin et al. 2007; Loarie et al. 2008;
Thuiller et al. 2008; Silva et al. 2019).

Many of these species present medicinal properties
that are strongly associated with human well-being
(e.g., Augustino and Gillah 2005, Albuquerque et al.
2018, Pompermaier et al. 2018). Climate change has
the potential to contract areas of suitable habitat for
aromatic and medicinal plant species across different
regions (Khanum et al. 2013; Tangjitman et al. 2015;
Munt et al. 2016; Roy and Roy 2016; Zhao et al.
2017; Gupta et al. 2019). As a consequence of cli-
mate change, ecosystem functions and the provision
of services, including food production, water storage,
supply of natural medicines, local climate regulation
and human well-being, may also be affected (Mooney
et al. 2009; Nelson et al. 2013).

Scientists around the world have drawn attention
to the effects of climate change on medicinal plants,
highlighting several damaging effects that may affect

the future availability of these resources (e.g., Ap-
plequist et al. 2020). Medicinal plants play an im-
portant role in providing ecosystem services, such as
local cultural services and those including economic
value, and human well-being, especially in poor re-
gions (Klein et al. 2008). The use of plants to im-
prove living conditions and to increase the chances of
survival comes from the beginning of human life (Bal-
ick and Cox 1997). Plants have numerous purposes
for humanity, including food, medicine, clothing and
housing, and ornamental use (Balick and Cox 1997).
Medicinal plants, in turn, are indispensable for main-
taining the health and safety of people in different
parts of the world. Currently, in many South Amer-
ican countries, approximately 80% of the population
uses medicinal plants (Firmo et al. 2011), revealing a
high degree of dependence (Nunes and Albuquerque,
2018). The number of studies on medicinal plants
has increased significantly worldwide since the 1990s
(Nunes and Albuquerque 2018). Since climate change
may affect species distribution and physiology (e.g.,
Scheffers et al. 2016), it may become an important
threat to medicinal plant species and their ecosystem
services (Borges et al. 2017a; Gupta et al. 2019).

Distinct patterns and consequences of climate
change have been predicted across different regions
of the world (Scheffers et al. 2016; Mansfield et al.
2020). In the case of tropical regions, high rates of
species loss in response to climate change are ex-
pected (Sheldon 2019). Species distribution mod-
els (SDMs) trained on presence-only occurrence data
have been frequently used to assess the effects of cli-
mate change on medicinal plants (e.g., Tangjitman
et al. 2015; Munt et al. 2016; Kaky and Gilbert
2017; Zhao et al., 2017; Asase and Peterson 2019).
The species distribution model approach based on
the maximum entropy theory (e.g., Phillips et al.
2006) allows the prediction of where the species is
favored based on the environmental characteristics of
the landscape, even if the entire landscape has not
been sampled densely (e.g., Phillips et al. 2006).
Although habitat suitability may expand for some
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medicinal species (e.g., Li et al. 2019), there is a
general trend indicating that climate change may con-
tract suitable habitats for medicinal plants across dif-
ferent regions of the world (e.g., Khanum et al. 2013;
Munt et al. 2016; Roy and Roy 2016; Zhao et al.
2017), including tropical regions (e.g., Tangjitman et
al. 2015; Cavalcante et al. 2020).

The Brazilian Caatinga is a seasonally dry tropi-
cal forest (SDTF) particularly rich in medicinal plant
species. In total, 385 medicinal plant species, of which
275 are native, were observed in the Caatinga dry for-
est (Albuquerque et al. 2007). Representing one of
the largest and most diverse semiarid regions in the
world, the Caatinga dry forest covers 912,529 km2 in
northeastern Brazil (Silva et al. 2017a). It is sur-
rounded by the Atlantic forest domain to the east
and the Cerrado to the west and south. Seasonality
due to low and irregularly distributed rainfall, associ-
ated with elevated temperatures and highly variable
edaphic conditions, results in a diverse spectrum of
Caatinga dry forest phytogeographic formations (e.g.,
Sampaio 1995; Cardoso and Queiroz 2007; Moro et
al. 2014; Moro et al. 2015). It is important to men-
tion that the Caatinga dry forest is inhabited by low-
income people who use forest resources intensely for
their survival (Albuquerque et al. 2017). This use
of natural resources by human rural populations may
exacerbate the effects of climate change of the biodi-
versity (e.g., Applequist et al. 2020).

Future climatic conditions for the Caatinga dry
forest indicate that some regions will likely experi-
ence high levels of aridity and subsequent desertifica-
tion (Marengo et al. 2017; Silva et al. 2019). It is
already known that Caatinga dry forest plants have
different susceptibilities to climate change (e.g., Silva
et al. 2019 and references therein). Specifically, habi-
tat suitability for endemic plants may be associated
with climate change, where plants with specialized
reproductive strategies will tend to lose a higher pro-
portion of suitable habitat than those with generalist
strategies (Silva et al. 2019). Drastic contractions in
suitable habitats were also observed for plant species
nonendemic to the Caatinga dry forest, such as the
cactus Epiphyllum phyllanthus (L.) Haw. (Cavalcante
et al. 2020). In this scenario, the Caatinga dry forest
represents a great opportunity for studies related to
the reproductive profile and perspectives of vulner-
ability of medicinal plant species to climate change,
which may serve as a basis for the development of
projects of sustainable use and biodiversity conserva-
tion.

In this study, we aimed to understand how climate
change in the northeastern region of Brazil affects the
range and spatial distribution for the 10 most relevant
medicinal plants native to the Caatinga dry forest.
We tested the hypothesis that the spatial distribu-

tion for these plant species in the Caatinga dry forest
may be reduced under scenarios of projected climate
change. We expected that increases in greenhouse
gas emissions, as predicted by climate models, may
be associated with the contraction of spatial distri-
bution for the most relevant medicinal plants in the
Caatinga dry forest.

MATERIAL AND METHODS

Selection of medicinal plant species in
the Caatinga dry forest

Based on the 275 species of native medicinal
plants listed for the Caatinga dry forest (Albuquerque
et al. 2007), we generated a list of 10 species na-
tive to this phytogeographic domain. The medic-
inal plant species analysed in this study were 1)
Myracrodruon urundeuva Allemão (Anacardiaceae),
2) Cereus jamacaru DC (Cactaceae), 3) Neocalyp-
trocalyx longifolium (Mart) Cornejo & Iltis (Cappa-
raceae), 4) Maytenus rigida Mart (Celastraceae), 5)
Operculina hamiltonii (G Don) DF Austin Staples, 6)
Operculina macrocarpa (L) Urb (Convolvulaceae), 7)
Amburana cearensis (Allemao) AC Sm, 8) Anadenan-
thera colubrina (Vell) Brenan, 9) Bauhinia cheilan-
tha (Bong) Steud and 10) Erythrina velutina Willd
(Leguminosae). These 10 species were selected based
on their relative importance index (RI), which is a
popular measure in ethnobotanical approaches (e.g.,
Albuquerque et al. 2006). This index measures the
use importance of medicinal plants based on thera-
peutic indications (see Bennett and Prance 2000 for
details). In the Caatinga dry forest (Figure 1), the
RI of medicinal plants ranged from 0.2 to 2.0 (Albu-
querque et al. 2007). RI values close to two indi-
cate high versatility of a given species in terms of its
medicinal properties. The native selected species ex-
hibited RI1.5 (Table 1), indicating their widespread
use for the treatment of many diseases by human na-
tive populations living in areas of Caatinga dry forest
(sensu Albuquerque et al. 2007). The medicinal ap-
plications and the parts of the plants that are used
are available in Table S1. The reproductive traits of
each medicinal plant species are described in Table 1.

Occurrence data

We required georeferenced data (native occur-
rence) of the 10 most relevant medicinal plant species
native to the Caatinga dry forest. Thus, precise
occurrence information of the studied species was
accessed in 1) The Global Biodiversity Information
Facility platform is an international data network
funded by governments around the world, provid-
ing open access to data on all life on Earth (GBIF
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Figure 1. Geographical location of the Caatinga dry forest in South America (A) and phytogeographic domains
in northeastern Brazil (B). Source of the shapes: MMA (http://mapas.mma.gov.br/i3geo/datadownload.htm
and http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm?/caatinga/dados/shape_file)

2021) (https://www.gbif.org, accessed May 2022);
2) REFLORA - Herbário Virtual, virtual herbarium
network that contains information on Brazilian plants
that are deposited in 63 herbaria in Brazil and 10
international herbaria (http://reflora.jbrj.gov.
br/reflora/herbarioVirtual, accessed May 2022);
3) Botanical Information and Ecology Network Plat-
form (BIEN), a global information network that helps
to document patterns of plant diversity, trait records
and distribution, which includes georeferenced plant
observation data from herbarium records, plots,
survey inventories (https://bien.nceas.ucsb.edu/
bien/biendata, accessed May 2022) and 4) 95 botan-
ical monographs and floras (for more information see
Table S2 in Supplementary Data). To access the
BIEN database, we use the BIEN package (Maitner
et al. 2018) available for the R 4.1.1 environment
(R Core Team, 2021). We excluded from the anal-
ysis all repeated and mismatch occurrence data for
each species. We used all the available points for

the studied species. We obtained 11,126 geograph-
ical coordinates for the species, covering the whole
area of natural occurrence, including the phytogeo-
graphical domain of the Caatinga dry forest. Table
S3 contains the DOI of each occurrence search by
species in GBIF and Table S4 summarizes the geo-
referenced data of medicinal species after removing
duplicates and points outside the Caatinga dry forest
limits, therefore allowing replication (e.g., Tahei et al.
2021).

Current and future climatic variables

We downloaded climate data (2.5 minutes spatial
resolution = ca. 21.4 km2) from WorldClim project
2.1 for the current period (average for the years 1970
- 2000) and the future in 2090 (average 2081 - 2100)
(Fick and Hijmans 2017). The WorldClim project
included a set of 19 climatic variables that summa-
rize aspects of precipitation and temperature (Fick
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and Hijmans 2017). Climate data for the future cli-
mate projections between 2081-2100 were based on
the Coupled Model Intercomparison Project Phase 6
(CMIP6; Eyring et al. 2016). The CMIP6 models
available so far tend to have higher climate sensitiv-
ity than other previous models (Eyring et al. 2016).
We selected three Shared Socioeconomic Pathways
(SSPs) scenarios, which are based on global popu-
lation growth, access to education, urbanization, eco-
nomic growth, resource availability, technology devel-
opment and demand drivers such as lifestyle changes
(Riahi et al. 2017). These climate scenarios are
inferred from aspects related to the carbon biogeo-
chemical cycle, atmospheric and oceanic chemistry,
vegetation types, emission of pollutants, solar ra-
diation, ozone concentration, hydrology and sea ice
(IPCC 2021). The three SSPs are (1) SSP2-4.5 (Mid-
dle of the Road), represents an optimistic scenario
of mitigation and adaptation, where social, economic
and technological trends do not significantly change
from historical patterns, with moderate population
growth, improvement in income inequality and envi-
ronmental degradation; (2) SSP3-7.0 (Regional Ri-
valry – A Rock Road), represents a realistic sce-
nario of mitigation and adaptation challenge, with
little investment in education, health and technolog-
ical development in the poorest countries, together
with a rapidly growing population and growing in-
equalities, high environmental degradation, is a path-
way for stabilization of radiative forcing by 2100;
and (3) SSP5-8.5 (Fossil-fueled Development – Tak-
ing the Highway), represents a pessimistic scenario
of high challenges for mitigation and low challenges
for adaptation, driven by exploitation of abundant
fossil fuel resources, this scenario corresponds to the
pathway with the highest greenhouse gas emissions
and a high increase in terrestrial temperatures (see
Riahi et al. 2017 and IPCC 2021 for more details).
We selected the SSPs scenarios based on the BCC-
CSM2-MR (Wu et al. 2021), CanESM5 (Swart et al.
2019), MIROC6 (Tatebe et al. 2019) general circu-
lation models (GCMs), which indicated better per-
formance over arid, semi-arid and neotropical regions
(e.g., Silva et al. 2019; Cai et al. 2020; Fuentes-
Castillo et al. 2020; Menéndez-Guerrero et al. 2020).
In addition to these variables, we also used elevation
as an edaphic variable from WorldClim project 2.1
(Fick and Hijmans 2017).

To reduce overfitting and collinearity of the 19 cli-
matic variables and elevation, models for each species
were performed based on noncorrelated variables in
the current and future climate scenarios. Correlations
among predictor variables were assessed by principal
component analysis (PCA), and we selected as predic-
tor variables the axes responsible for 95% of the total
variation of climate variables (De Marco and Nóbrega

2018) within the R 4.1.1 environment (R Core Team,
2021). The predictor variables (1) temperature sea-
sonality (b4), (2) annual precipitation (b12), (3) pre-
cipitation of wettest quarter (b16), (4) precipitation
of warmest quarter (b18), (5) precipitation of coldest
quarter (b19), and (6) elevation were retained in our
models. These variables have been considered impor-
tant for modeling plant species distributions in the
Caatinga dry forest (e.g., Marengo et al. 2017; Silva
et al. 2019; Cavalcante et al. 2020).

Species distribution modelling

We used three algorithms based on (1) the max-
imum entropy method (MXD; Fonseca et al. 2015;
Silva et al. 2019), (2) support vector machine (SVM;
Drake et al. 2006), and (3) random forest (RDF;
Sahragard et al. 2018) to predict habitat suitabil-
ity for medicinal plant species native to the Caatinga
dry forest. These algorithms are adequate to pres-
ence and pseudo-absence data (Andrade et al. 2020),
as in the localities sampled in this study. For this,
we used “ENMTML” package (Andrade et al. 2020)
within R 4.1.1 environment (R Core Team 2021). A
total of 15 replicates were used to calculate each al-
gorithm in each climate scenario (current, SSP 2.45,
SSP 3.70, and SSP 5.85) for each medicinal plant
species. The occurrence data for each replicate was
divided into a training group (70% of the sampled
occurrence data for each plant species) and a test or
validation group (30% of the sampled occurrence data
for each plant species), using the bootstrap method.
As the algorithms used are based on presence and
pseudo-absence data, we configured the distribution
models to select 500 pseudo-absences in grid cells that
had less climatic suitability for the presence of the
species (Barbet-Massin et al. 2012).

In total, 1800 distribution projections were built
(species x scenarios x algorithms x climatic models),
of which 450 refer to the current scenario and 1350 to
future scenarios. The performance of the each of the
models was evaluated using TSS (True Skill Statis-
tics) and AUC (Area Under the Curve), which have
already been used in other studies to evaluate plant
distribution models in the Caatinga dry forest (Silva
et al. 2020). The TSS and AUC are standard mea-
sures of goodness-of-fit for species distribution models
(Allouche et al. 2006). TSS differentiates the overall
accuracy of a model based on its random accuracy,
providing a score between -1 and 1, with values close
to 1 indicating optimal performance (Allouche et al.
2006). Values of TSS above 0.5 are considered satis-
factory to inform the performance of the model. AUC
values ranged from 0 to 1. When the accuracy is low,
AUC values generally range from 0.5 to 0.7. Models
with moderate accuracy exhibit AUC values between
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0.7 and 0.9, while a high degree of accuracy is typi-
cally greater than 0.9 (Wakie et al. 2014).

Based on the ensemble method, we used consen-
sus maps of habitat suitability for the medicinal plant
species in each package and climate scenario analyzed
through a PCA. In total, 100 consensus maps were
generated, 10 referring to the current scenario and 90
referring to future scenarios (30 maps for each sce-
nario, three maps per species). We combined the
three maps of each species in each future scenario us-
ing the “Spatial Analyst Tools” function followed by
“Cell Statistics - Overlay Statistic (Mean)” in ArcGIS
10.0 software (ESRI 2010). For analytical purposes,
we defined suitable habitat areas as those with a high
probability of occurrence (≥ 80%, e.g., Silva et al.
2019, Li et al. 2020). Then, we cut all consensus maps
to analyze the effects of climate change on the distri-
bution of medicinal plant species in the Caatinga dry
forest. The extent of suitable habitat was calculated
separately from the maps generated for each species
in each scenario. All modeling results were checked
and edited using ArcGIS 10.0 software (ESRI 2010).
The strong influence of the greater importance of cli-
matic variables for defining the limits of occurrence
of species suggests that the models generated capture
biological factors that govern the persistence of the
population in the environment (Searcy and Shaffer
2016). In the Results section, we set up a table stat-
ing the importance of predictor variables (e.g., Mweya
et al. 2016; Aguirre-Gutiérrez et al. 2017; Wang et
al. 2018) for the medicinal plant set in each scenario
studied in the dry Caatinga dry forest.

As additional information, we investigated the
pattern of species richness and composition of medici-
nal plants in each climate change scenario (SSP 2.45,
SSP 3.70, SSP 5.85). For both, we use the result-
ing LPT (Lowest Presence Threshold) binary maps
and calculated the species richness and composition
(D’Amen et al. 2015). The species richness was cal-
culated by combining/summing the presence of each
medicinal plant species per cell of the binary maps
(presence and absence) generated together with the
consensus probability maps, producing a consensus
map of taxonomic richness (e.g., Liu et al. 2005;
Dubuis et al. 2011; Guisan and Rahbel 2011). The
species composition was calculated based on the prob-
ability ranking rule, classifying the species in each as-
semblage based on the probability of occurrence ob-
tained for each species (sum of the probability maps
of occurrence of the species) and on the number
of species per assemblage (map of species richness)
(D’Amen et al. 2015). Species composition reduces
species richness overprediction (for more details see
D’Amen et al. 2015). We used the “Spatial Analyst
Tools” function followed by “Cell Statistics - Overlay
Statistic (Sum)” and “Cell Statistics - Overlay Statis-

tic (Range)” to access the species richness and com-
position, respectively, in ArcGIS 10.8 software (ESRI
2019). Prediction of species richness and composi-
tion based on the sum of predictions from species
distribution models is as reliable and important as
macroecological models (Dubuis et al. 2011; Guisan
and Rahbel 2011, D’Amen et al. 2015), and can help
identifying community assembly mechanisms (Grunié
et al. 2020). It is worth mentioning that species dis-
tribution models are based on the fact that environ-
mental conditions determine the species occurrence,
not including additional processes [e.g., plant-plant
interaction (e.g., competition), plant-animal interac-
tion (e.g., pollination, dispersion)] in the predictions
(Guisan and Zimmermann 2000).

RESULTS

The high AUC and TSS values indicate that the
performance of all models have high quality, effec-
tiveness, and greater proximity to the occurrence
data, with AUC and TSS showing mean values of
0.78 and 0.7, respectively (Table 2). Comparing the
current scenario with any future scenario, we ob-
served that climate change may be associated with
a reduction in areas of suitable habitats for seven
of the 10 studied species and with an increase for
four species in the Caatinga dry forest. Specifi-
cally, suitable habitats may be reduced by up to
2.71% for Bauhinia cheilantha, 7.53% for Amburana
cearensis, 8.36% for Operculina macrocarpa, 8.83%
for Myracrodruon urundeuva, 12.02% for Anadenan-
thera colubrina, 14.22% for Neocalyptrocalyx longi-
folium and 22.22% for Operculina hamiltonii; and in-
creased for Maytenus rigida (2.81 – 4%), Erythrina
velutina (2.91 – 6.52%) and Cereus jamacaru (0.76 –
7.88%) (Figures 2-4). Areas of suitable habitats may
be reduced in the same proportion in the SSP 3.70
and SSP 5.85 for N. longifolium, about 14.22% and
14.07% respectively, in comparison to the current sce-
nario (Figures 2 and 3I-L). Future areas of suitable
habitat for B. cheilantha will likely be increased in
the SSP 2.45 scenario (20.94%) and will likely be re-
duced in the SSP 3.70 and SSP 5.85 climate change
scenarios in comparison to the current scenario (1%
and 2.71%, respectively) (Figures 2 and 4M-P).

Comparing the three future climate change sce-
narios with the current scenario, reductions in areas
with a high probability of occurrence may be more
intense in the SSP 3.70 scenario for N. longifolium,
O. hamiltonii and A. cearensis, and in the SSP 2.45
scenario for O. macrocarpa, A. colubrina (Figures 2-
3) (Figures 2 and 4Q-T). Increases in areas with a
high probability of occurrence will be more intense in
the 2.45 scenario for M. urundeuva, C. jamacaru, M.
rigida, B. cheilantha, and in the SSP 5.85 scenario for
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Figure 2. Potential changes in the future distribution (i.e., areas with probability of occurrence > 80%) of
medicinal plant species native to the Caatinga dry forest in three scenarios of climate change (SSP 2.45, SSP
3.70 and SSP 5.85).

C. velutina (Figures 2-4).
Considering species richness, in total, we observed

that the three future climate change scenarios (SSP
2.45, SSP 3.70 and SPP 5.85) show a reduction in
species richness per grid cell of about 15.5% in the
SSP 2.45 scenario, 12% in the SSP 3.70 scenario and
22% in the SSP 5.85 scenario (Figure 5). The maps of
potential distribution of species richness show fewer
species in the north and southeastern areas of the
Caatinga dry forest, regardless of the climate change
scenario (Figure 6A-D). Considering the species com-
position, one to four species can be distributed with-
out any barriers to dissemination or competitive in-
teractions in the three climate scenarios studied (Fig-
ure 6E-H).

The models generated and analyzed showed that
annual precipitation and elevation had a high contri-
bution in the current, SSP 3.70 and SSP 5.85 sce-
narios for all medicinal plant species native to the
Caatinga dry forest (Table 3). The environmental
variables elevation and precipitation of the coldest
quarter had a high contribution in the SSP 2.45 (Ta-
ble 3).

DISCUSSION

Our results indicate that climate change may dis-
tinctly affect areas of suitable habitats for medicinal
plants in the Caatinga dry forest. Depending on the

climatic scenario, SSP 2.45, SSP 3.70 or SSP 5.85,
suitable habitats for medicinal plants in the Caatinga
dry forest may be increased or reduced. In total, con-
tractions in areas of suitable habitats were observed
in 70% of the analysed species, signalling that the
effects of climate changes are species-specific. Ex-
pansions in suitable areas were observed for 30% of
the studied species, refuting our hypothesis for these
species. Furthermore, climate change may reduce, by
up to 22%, the species richness of medicinal plants
in the Caatinga dry forest. By affecting the extent
of suitable habitats, species richness and composi-
tion, climate change may also negatively impact the
provisioning of ecosystem services, such as natural
medicines, in the Caatinga dry forest, since the ma-
jority of the medicinal species may exhibit a reduc-
tion in habitat suitability independently of the tested
climate scenario.

Our results reinforce the idea that some species
of medicinal plants are sensitive to climate change
and partially corroborate recent evidence that climate
change, independent of intensity, may negatively af-
fect habitat suitability for native plant species in the
Caatinga dry forest (e.g., Silva et al. 2019; Cavalcante
et al. 2020). Seasonally dry tropical forests, such
as the Caatinga, are sensitive to changes in climate
since they are already at the threshold of tempera-
ture and water availability (e.g., Allen et al. 2017).
In general, the few studies that address forecasting
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Figure 3. Geographical projection of suitable habitat for medicinal plants to the Caatinga dry forest in the
present and two future scenarios (SSP 2.45, SSP 3.70 and SSP 5.85) for 2090 (average 2081 - 2100). Myracro-
druon urundeuva (A-C), Cereus jamacaru (D-F), Neocalyptrocalyx longifolium (G-I), Maytenus rigida (J-L) and
Operculina macrocarpa (M-O).
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Figure 4. Geographical projection of suitable habitat for medicinal plants to the Caatinga dry forest in the
present and three future scenarios (SSP 2.45, SSP 3.70 and SSP 5.85) for 2090 (average 2081 - 2100). Operculina
hamiltonii (A-C), Amburana cearensis (D-F), Anadenanthera colubrina (G-I), Bauhinia cheilantha (J-L) and
Erythrina velutina (M-O).
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Figure 5. Richness of medicinal plants species in the Caatinga dry forest in the current and three future
scenarios SSP 2.5, SSP 3.70 and SSP 5.85) for 2070 (average 2081 - 2100).

Figure 6. Distribution of species richness and composition of medicinal plants in the Caatinga dry forest in
the current and three future scenarios SSP 2.5, SSP 3.70 and SSP 5.85) for 2090 (average 2081 - 2100).
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plant responses to future climate change show rele-
vant changes in the area of suitable habitat for medic-
inal plants occurring in tropical regions (e.g., Kan-
hum et al. 2013; Kaky and Gilbert 2016; Roy and
Roy 2016) and temperate regions (e.g., Salick et al.
2009; Munt et al. 2016; Kumar et al. 2017a; Li et al.
2019). Climatic forecasts indicate that suitable habi-
tats for plants in the Caatinga dry forest are likely
to be reduced with increases in temperature and de-
creases in precipitation (Marengo et al. 2011; An-
drade et al. 2017; Silva et al. 2019). More intense
and negative impacts on the habitats are expected
for plants bearing specialized reproductive strategies
(such as dioecious or self-incompatible species, i.e.,
obligatory cross-pollination) and that are endemic to
the Caatinga dry forest (Silva et al. 2019). On the
other hand, it is expected that some species will be
able to resist prolonged and intense drought since
they have conservative water use strategies (Santos
et al., 2014). This resistance may increase the area
of suitable habitat, as observed in this study for C.
jamacaru, M. rigida and E. velutina with climate
change.

Suitable habitats for medicinal plants native to
the Caatinga dry forest may be reduced, increased or
not changed by climate change. Complex patterns
of suitable habitat change may be related to the fact
that plants have different strategies that maximize
water use. According to morphological, anatomical
and ecophysiological studies, some species of dry trop-
ical forests will be able to adapt to severe drought due
to characteristics such as leaf loss and the presence
of xylem that supports high negative pressure dur-
ing drought, water storage capacity in the stem, deep
roots, and high resilience to gas exchange, among oth-
ers (Santos et al. 2014). Associated with these char-
acteristics, the wide distribution in dry forests seems
to favour the permanence of these species. Cereus
jamacaru, for example, has high resistance to water
stress and high temperatures (Meiado et al. 2010;
Silva et al. 2020) and therefore is widely distributed
and abundant in the Caatinga dry forest, including
the driest areas (Meiado et al. 2010). Additionally,
E. velutina is able to improve water use efficiency to
compensate for water stress (Leite et al. 2022), being
distributed in areas of Caatinga dry forest and Cer-
rado in Brazil (Martins 2020). Therefore, one could
think that species with these traits would tend not
to be impacted by future climate changes. However,
these species, as well as others, present a wide variety
of use and management strategies in social-ecological
systems. One of the unknowns of climate change is
that it must also alter people’s behaviour, in that sys-
tems, so that the use of some plants can be drastically
increased throughout their geographical distribution,
as will be discussed further below. Studies suggest

that the loss of species (plants, mammals and birds,
for example) as a consequence of climate change is
a trend for dry tropical forests (e.g., Golicher et al.
2012; Hidasi-Neto et al. 2019; Prieto-Torres et al.
2020; Pinedo-Escatel et al. 2021). The negative im-
pact of reduced levels of precipitation and recurrent
drought events on the species richness of medicinal
plants in the dry Caatinga forest agrees with these
predictions. The potential loss of species in south-
ern and southeastern regions may directly reflect the
pattern of use of medicinal plants by the inhabitants
of these places, who depend on the forest for subsis-
tence.

The intense exploitation of medicinal plants can
cause local extinction by increasing the reduction in
the geographical distribution of a given plant, inde-
pendent of the climatic conditions (Svenning et al.
2009; Santos et al. 2014). Santos et al. (2017) eval-
uated 28 species of medicinal plants of the Caatinga
dry forest for local importance and use, among other
variables, concluding that seven species should have
priority for conservation. Amburana cearensis and
Bauhinia cheilantha are among the plants they in-
dicate with high priority for conservation since they
are severely used by rural communities, as they have
medicinal and economic interest and are frequently
reported in ethnobotanical studies. It is worth re-
membering that although some medicinal plants can
adapt to changes in the climate (e.g., Cereus ja-
macaru, M. rigida and E. velutina) and resist hu-
man exploitation, the pharmaceutical properties may
be altered. The effects of climate change on the
quantity and quality of primary and secondary plant
metabolites are still not well documented. How-
ever, studies indicate that high concentrations of
CO2 and temperature are able to alter the amount
of secondary metabolites produced (e.g., Kumar et
al. 2017; Holopainen et al. 2018; Jamloki et al.
2021). In this sense, increases in temperature and
decreases in precipitation clutter the signaling cas-
cade of metabolic pathways that regulate the pro-
duction of secondary metabolites and a reduction in
plant productivity (Gupta et al. 2019; see also Al-
bergaria et al. 2020, 2021). Furthermore, we do
not know how climate change will affect human be-
havioural patterns so that the intensity of use of a
species can be increased due to environmental pres-
sures on human populations (e.g., Applequist et al.
2020). A factor that aggravates this situation, es-
pecially in the semiarid region, is that most of the
plants used in the Caatinga dry forest are multipur-
pose species (Albuquerque et al. 2009). This implies
that in addition to medicinal use, they can be used
for food, fuel, house building and other architectural
constructions. Therefore, future studies of the effects
of climate change on medicinal plants should also con-
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sider the patterns of use of these species and how they
are modulated by social-ecological variables (e.g., Al-
buquerque et al. 2019).

By changing areas of suitable habitats, species
richness and composition of medicinal plants in the
Caatinga dry forest, climate change may compro-
mise the ecosystem functions and services provided
by them. The functions are mainly associated with
ecological interactions, such as pollination and seed
dispersion, while the ecosystem service is represented
by the medicinal use of these plants. As a main
consequence, it is expected that there will be im-
portant changes in ecological interactions, including
the structure of interaction networks (Tylianaskis et
al. 2008), phenological synchrony (Memmott et al.
2007) and geographic distribution of animal species
(Oliveira et al. 2012; Costa et al. 2018). Polli-
nation and dispersion are considered key processes
for maintaining plants in the ecosystem (Strykstra
et al. 2002; Kremen et al. 2007) and, therefore,
are essential for the provision of ecosystem services,
such as food, timber, medicinal and nutrient cycling
(Wenny et al. 2011; IPBES 2016; Evangelista-Vale
et al. 2021). In this sense, associated with the
loss of suitable habitats for M. urundeuva, N. longi-
folium, A. cearensis, A. colubrina and B. cheilan-
tha, these species have an even worse scenario, as
they are obligatory outcrossing species, therefore de-
pending on pollinators for their reproduction (Table
1). Accordingly, they may experience greater restric-
tions for their future permanence in some areas of
the Caatinga dry forest. Even the increase in areas
of suitable habitats for C. jamacaru, E. velutina and
M. rigida is not a guarantee of permanence for these
species. Cereus jamacaru and M. rigida also oblig-
atory depend on animals (specialist, in the case of
C. jamacaru) for their reproduction (Table 1). On
the other hand, Erythrina velutina, despite showing
genetic self-compatibility, is pollinated by humming-
birds, a vector that is also specialist (Table 1) and
which may show a reduction in areas of probable oc-
currence in the Caatinga dry forest, as projected by
Centeno-Alvarado et al. (2022). All three species still
depend on animals to disperse their seeds (Table 1).
Thus, the services provided by medicinal plants to na-
tive human populations, including improved quality
of life, income generation in the local economy and
cultural value (Klein et al. 2008), may be altered.
Future reductions in suitable habitat for M. urun-
deuva, N. longifolium, O. hamiltonii, O. macrocarpa,
A. cearensis and B. cheilantha will reduce the pos-
sibility of treating diseases such as inflammation in
general, renal, hepatic and respiratory problems, car-
diovascular problems, helminthiasis, lung inflamma-
tion, diabetes, spinal problems, nervous disturbances,
calmativity, and odontalgia (Table 1S1), mainly in

the north and southeastern areas of the Caatinga dry
forest. Specifically, the possibility of treating diseases
such as anemia and blood thinner will be negatively
impacted, since the other species of medicinal plants
analyzed in this study are not used for these purposes.
In contrast, the increase in area of probable occur-
rence of C. jamacaru, M. rigida and E. velutina may
increase the chances of treating renal problems, hep-
atic problems and insomnia in particular. Therefore,
low-income communities in the Caatinga dry forest
that use plants intensively for popular medicine (Al-
buquerque et al. 2017) may be negatively impacted,
since in most cases, these plants are the only available
resource for the treatment of diseases.

Our results indicate that precipitation is the most
relevant variable to the distribution of medicinal plant
species in the Caatinga dry forest. Water availabil-
ity is a limiting factor for the occurrence of plants in
tropical dry forests (Pennington et al. 2000; Esquivel-
Muelbert et al. 2016; Chaturvedi and Raghuban-
shi 2018), such as the Caatinga dry forest (Silva et
al. 2017b). Precipitation influences several ecolog-
ical processes, such as flowering and fruiting, seed
germination, and seedling growth (e.g., Khurana and
Singh 2001; Bustamante-Becerra et al. 2014; Silva
et al. 2020), and consequently can alter the com-
position of species in the community (Segura et al.
2002; Esquivel-Muelbert et al. 2016; Hiltner et
al. 2016). However, our species distribution mod-
elling study uses only environmental variables (cli-
matic and edaphic) and occurrence data for medic-
inal plant species, and it would also be interesting
for future studies to consider other ecological param-
eters that drive species distribution, such as edaphic
factors and interaction with animal pollinators and
dispersers, important agents in the reproduction of
angiosperms.

CONCLUSION

Our results highlighted that climate change may
exert distinct impacts on the area and distribution of
suitable habitat, in addition to reducing the richness
of medicinal plant species in the Caatinga dry forest,
acting directly in the provision of ecosystem services,
such as the provisioning of natural medicines for rural
human populations. Regardless of the climate change
scenario, the conservation of the biodiversity of the
Caatinga dry forest still presents challenges. There-
fore, conservation strategies are needed for species of
medicinal plants native to the Caatinga dry forest
and with a high relative importance index, especially
those with endangered conservation status. These
strategies may also contribute to the maintenance of
ecosystem services provided by medicinal plants in
the Caatinga dry forest.
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Table 1. Reproductive traits of the medicinal plant species native to the Caatinga dry forest that exhibit high relative importance index (RI ≥ 1.5). Traits
marked in bold are considered highly specialized. [Hm = Hermaphrodite; D= Dioecious; M= Monoecious; SI= self-incompatible; SC= self-compatible;
OC= outcrossing (obligatory cross pollination)].

Families/Species Pollination
systemsa

Specialist or generalist
Pollination Systemb

Sexual
systemc

Reproductive
systemd

Dispersal
modee

Relative
importance

indexf
References

Anacardiaceae

Myracrodruon urundeuva
Diverse small

insects1
G D2 D (OC)2 Wind3 2.0

1Soares et al. 2014;
2Machado et al. 2006;
3Carvalho 2003

Cactaceae

Cereus jamacaru Sphingids1 S Hm2 SI (OC)3 Animal4 1.7

1Zanina 2013;
Personal observations;
2Machado et al. 2006;
3Rafiana et al. 2021;
4Silva & Rodal 2009

Capparaceae

Neocalyptrocalyx longifolium Bats1 S M2 SI (OC)2 Autochory3 1.5

1Machado & Lopes 2004;
2Machado et al. 2006;
3Silva & Rodal 2009

Celastraceae

Maytenus rigida
Diverse small

insects1
G D2 D (OC)2 Animal3 1.9

1Carvalho 2008;
2Leite & Machado 2010;
3Silva & Rodal 2009

Convolvulaceae

Operculina hamiltonii Bees1 S Hm1 - Autochory2 1.6
1Staples et al. 2020;
2Peres 2016

Operculina macrocarpa Bees1 S Hm1 - Autochory2 1.6
1Staples et al. 2020;
2Peres 2016

Leguminosae

Amburana cearensis Moths1 G Hm2 SI (OC)1 Wind3 2.0

1Barral 2018;
2Machado et al. 2006;
3Leal et al. 2003

Anadenanthera colubrina Bees1 G M1 SI (OC)2 Autochory3 1.6

1Borges et al. 2017;
2Borges 2010;
3Griz & Machado 2001

Bauhinia cheilantha Bats1 S Hm2 SI (OC)3 Autochory4 1.7

1Quirino & Machado 2014;
2Machado et al. 2006;
3Leite 2006;
4Machado et al. 1999

Erythrina velutina Hummingbirds
and birds1 S Hm2 SC3 Animal4 1.5

1Rocco & Sazima;
2Machado et al. 2006;
3Ribeiro 2011;
4Griz & Machado 2001

aCategories according to Girão et al. (2007), Lopes et al. (2009), Faegri and van der Pijl (1979); bClassification sensu Kang & Bawa (2003); cAccording
to Bawa (1980), Endress (1994), Proctor et al. (1996); dClassification according to Richards (1997); eCategories according to Pijl (1982); fValues from
Albuquerque et al. (2007).
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Table 2. Adjustments between the sample points of medicinal plant species native to the Caatinga dry forest
and climatic scenarios for the current period (average for 1970 - 2000) and three future scenarios for 2090
(average for 2081 - 2100): SSP 2.45, SSP 3.70 and SSP 5.85.

Species Climate scenarios AUC TSS
Mean SD Mean SD

Myracrodruon urundeuva

Current 0.86 0.01 0.76 0.03
2.45 0.89 0.006 0.75 0.01
3.70 0.89 0.005 0.75 0.01
5.85 0.89 0.006 0.78 0.01

Cereus jamacaru

Current 0.86 0.009 0.73 0.01
2.45 0.89 0.008 0.76 0.01
3.70 0.89 0.008 0.81 0.007
5.85 0.88 0.007 0.86 0.01

Neocalyptrocalyx longifolium

Current 0.87 0.007 0.81 0.01
2.45 0.88 0.005 0.81 0.01
3.70 0.89 0.005 0.79 0.01
5.85 0.88 0.006 0.81 0.01

Maytenus rigida

Current 0.93 0.009 0.75 0.02
2.45 0.94 0.007 0.85 0.01
3.70 0.93 0.006 0.83 0.01
5.85 0.94 0.01 0.85 0.01

Operculina hamiltonii

Current 0.78 0.02 0.71 0.03
2.45 0.79 0.02 0.74 0.04
3.70 0.80 0.01 0.72 0.04
5.85 0.87 0.02 0.75 0.04

Operculina macrocarpa

Current 0.88 0.01 0.77 0.02
2.45 0.88 0.01 0.72 0.03
3.70 0.89 0.01 0.77 0.02
5.85 0.89 0.009 0.76 0.02

Amburana cearensis

Current 0.89 0.01 0.85 0.02
2.45 0.90 0.006 0.75 0.01
3.70 0.89 0.007 0.84 0.01
5.85 0.89 0.006 0.80 0.02

Anadenanthera colubrina

Current 0.87 0.003 0.81 0.009
2.45 0.88 0.003 0.72 0.009
3.70 0.89 0.003 0.74 0.008
5.85 0.88 0.003 0.74 0.009

Bauhinia cheilanta

Current 0.89 0.009 0.70 0.01
2.45 0.88 0.01 0.72 0.01
3.70 0.89 0.009 0.82 0.01
5.85 0.89 0.006 0.78 0.01

Erythrina velutina

Current 0.86 0.01 0.79 0.03
2.45 0.90 0.01 0.76 0.02
3.70 0.90 0.01 0.83 0.03
5.85 0.90 0.01 0.83 0.02
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Table 3. Summary of principal component analysis for environmental variables used in modelling the distribution of medicinal plant species native to the
Caatinga dry forest including variable loads for principal components 1-2.

Variables

Scenarios Axes Temperature
seasonality

Annual
precipitation

Precipitation of
wettest quarter

Precipitation of
warmest quarter

Precipitation of
coldest quarter Elevation

Current PC1 -0.495 0.678 0.242 0.103 0.215 -0.634
PC2 0.112 -0.546 -0.196 -0.101 -0.180 -0.772

SSP 2.45 PC1 -0.116 0.263 0.223 -0.292 0.118 -0.421
PC2 -0.258 -0.359 0.188 0.284 -0.379 -0.316

SSP 3.70 PC1 -0.178 0.756 0.290 0.215 0.302 -0.439
PC2 -0.344 -0.37 -0.153 0.32 -0.394 -0.887

SSP 5.85 PC1 -0.121 0.769 0.297 0.154 0.302 -0.418
PC2 -0.400 -0.365 -0.151 -0.326 -0.142 -0.902
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